  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/05.10.21.0011.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[Sin[\[CurlyTheta]] SphericalHarmonicY[Subscript[n, 1], 
     Subscript[m, 1], \[CurlyTheta], \[CurlyPhi]] 
    SphericalHarmonicY[Subscript[n, 2], Subscript[m, 2], \[CurlyTheta], 
     \[CurlyPhi]] Conjugate[SphericalHarmonicY[Subscript[n, 3], 
      Subscript[m, 3], \[CurlyTheta], \[CurlyPhi]]], {\[CurlyTheta], 0, Pi}, 
   {\[CurlyPhi], 0, 2 Pi}] == 
  Sqrt[((2 Subscript[n, 1] + 1) (2 Subscript[n, 2] + 1))/
     (4 Pi (2 Subscript[n, 3] + 1))] ClebschGordan[{Subscript[n, 1], 0}, 
    {Subscript[n, 2], 0}, {Subscript[n, 3], 0}] 
   ClebschGordan[{Subscript[n, 1], Subscript[m, 1]}, 
    {Subscript[n, 2], Subscript[m, 2]}, {Subscript[n, 3], 
     Subscript[m, 3]}] /; Element[Subscript[n, 1], Integers] && 
  Subscript[n, 1] >= 0 && Element[Subscript[n, 2], Integers] && 
  Subscript[n, 2] >= 0 && Element[Subscript[n, 3], Integers] && 
  Subscript[n, 3] >= 0 && Element[Subscript[m, 1], Integers] && 
  Element[Subscript[m, 2], Integers] && Element[Subscript[m, 3], Integers] && 
  Abs[Subscript[m, 1]] <= Subscript[n, 1] && Abs[Subscript[m, 2]] <= 
   Subscript[n, 2] && Abs[Subscript[m, 3]] <= Subscript[n, 3] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", RowBox[List["2", " ", "\[Pi]"]]], RowBox[List[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["m", "1"], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "2"], ",", SubscriptBox["m", "2"], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], RowBox[List["Conjugate", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "3"], ",", SubscriptBox["m", "3"], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], "]"]], RowBox[List["\[DifferentialD]", "\[CurlyPhi]"]], RowBox[List["\[DifferentialD]", "\[CurlyTheta]"]]]]]]]], "\[Equal]", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "1"]]], "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "2"]]], "+", "1"]], ")"]]]], RowBox[List["4", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "3"]]], "+", "1"]], ")"]]]]]], RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "3"], ",", "0"]], "}"]]]], "]"]], RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "3"], ",", SubscriptBox["m", "3"]]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "1"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["n", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "2"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["n", "3"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "3"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["m", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["m", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["m", "3"], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["m", "1"], "]"]], "\[LessEqual]", SubscriptBox["n", "1"]]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["m", "2"], "]"]], "\[LessEqual]", SubscriptBox["n", "2"]]], "\[And]", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["m", "3"], "]"]], "\[LessEqual]", SubscriptBox["n", "3"]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mn> 0 </mn>  <mi> π </mi>  </msubsup>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mn> 0 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </msubsup>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ϑ </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> Y </mi>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  <msub>  <mi> m </mi>  <mn> 1 </mn>  </msub>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> Y </mi>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  <msub>  <mi> m </mi>  <mn> 2 </mn>  </msub>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mover>  <mrow>  <msubsup>  <mi> Y </mi>  <msub>  <mi> n </mi>  <mn> 3 </mn>  </msub>  <msub>  <mi> m </mi>  <mn> 3 </mn>  </msub>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> _ </mo>  </mover>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> φ </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> ϑ </mi>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msub>  <mi> n </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> 〈 </mo>  <mrow>  <mrow>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mn> 0 </mn>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mn> 0 </mn>  </mrow>  <mtext>   </mtext>  <mo> ❘ </mo>  <mtext>   </mtext>  <mrow>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> n </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mn> 0 </mn>  </mrow>  </mrow>  <mo> 〉 </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "0", "\[MediumSpace]", "0"]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", SubscriptBox["n", "3"], "\[MediumSpace]", "0"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> 〈 </mo>  <mrow>  <mrow>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> m </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> m </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mtext>   </mtext>  <mo> ❘ </mo>  <mtext>   </mtext>  <mrow>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> n </mi>  <mn> 3 </mn>  </msub>  <mo> ⁢ </mo>  <mtext>   </mtext>  <msub>  <mi> m </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> 〉 </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", SubscriptBox["n", "3"], "\[MediumSpace]", SubscriptBox["m", "3"]]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> n </mi>  <mn> 3 </mn>  </msub>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> m </mi>  <mn> 1 </mn>  </msub>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> m </mi>  <mn> 2 </mn>  </msub>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> m </mi>  <mn> 3 </mn>  </msub>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> m </mi>  <mn> 1 </mn>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ≤ </mo>  <msub>  <mi> n </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> m </mi>  <mn> 2 </mn>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ≤ </mo>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <msub>  <mi> m </mi>  <mn> 3 </mn>  </msub>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> ≤ </mo>  <msub>  <mi> n </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> φ </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  </uplimit>  <apply>  <int />  <bvar>  <ci> ϑ </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <pi />  </uplimit>  <apply>  <times />  <apply>  <sin />  <ci> ϑ </ci>  </apply>  <apply>  <ci> SphericalHarmonicY </ci>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  <apply>  <ci> SphericalHarmonicY </ci>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  <apply>  <ci> OverBar </ci>  <apply>  <ci> SphericalHarmonicY </ci>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 3 </cn>  </apply>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <pi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> ClebschGordan </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 0 </cn>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 0 </cn>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 3 </cn>  </apply>  <cn type='integer'> 0 </cn>  </list>  </apply>  <apply>  <ci> ClebschGordan </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> ℕ </ci>  </apply>  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> ℕ </ci>  </apply>  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 3 </cn>  </apply>  <ci> ℕ </ci>  </apply>  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  <integers />  </apply>  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  <integers />  </apply>  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 3 </cn>  </apply>  <integers />  </apply>  <apply>  <leq />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <leq />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <leq />  <apply>  <abs />  <apply>  <ci> Subscript </ci>  <ci> m </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], RowBox[List[SubsuperscriptBox["\[Integral]", "0", RowBox[List["2", " ", "\[Pi]"]]], RowBox[List[RowBox[List[RowBox[List["Sin", "[", "\[CurlyTheta]_", "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "1"], ",", SubscriptBox["m_", "1"], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "2"], ",", SubscriptBox["m_", "2"], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", RowBox[List["Conjugate", "[", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "3"], ",", SubscriptBox["m_", "3"], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], "]"]]]], RowBox[List["\[DifferentialD]", "\[CurlyPhi]_"]], RowBox[List["\[DifferentialD]", "\[CurlyTheta]_"]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "2"]]], "+", "1"]], ")"]]]], RowBox[List["4", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "3"]]], "+", "1"]], ")"]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["nn", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "3"], ",", "0"]], "}"]]]], "]"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["nn", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "3"], ",", SubscriptBox["mm", "3"]]], "}"]]]], "]"]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["nn", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "1"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["nn", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "2"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["nn", "3"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "3"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["mm", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["mm", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["mm", "3"], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["mm", "1"], "]"]], "\[LessEqual]", SubscriptBox["nn", "1"]]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["mm", "2"], "]"]], "\[LessEqual]", SubscriptBox["nn", "2"]]], "&&", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["mm", "3"], "]"]], "\[LessEqual]", SubscriptBox["nn", "3"]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |