|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.10.23.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[ClebschGordan[{Subscript[n, 1], k}, {Subscript[n, 2], M - k}, {L, M}]
SphericalHarmonicY[Subscript[n, 1], k, \[CurlyTheta], \[CurlyPhi]]
SphericalHarmonicY[Subscript[n, 2], M - k, \[CurlyTheta], \[CurlyPhi]],
{k, Max[M - Subscript[n, 2], -Subscript[n, 1]],
Min[M + Subscript[n, 2], Subscript[n, 1]]}] ==
Sqrt[((2 Subscript[n, 1] + 1) (2 Subscript[n, 2] + 1))/(4 Pi (2 L + 1))]
ClebschGordan[{Subscript[n, 1], 0}, {Subscript[n, 2], 0}, {L, 0}]
SphericalHarmonicY[L, M, \[CurlyTheta], \[CurlyPhi]] /;
Element[Subscript[n, 1], Integers] && Subscript[n, 1] >= 0 &&
Element[Subscript[n, 2], Integers] && Subscript[n, 2] >= 0 &&
Element[L, Integers] && Element[M, Integers] &&
Abs[Subscript[n, 1] - Subscript[n, 2]] <= L <=
Subscript[n, 1] + Subscript[n, 2] && -L <= M <= L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["M", "-", SubscriptBox["n", "2"]]], ",", RowBox[List["-", SubscriptBox["n", "1"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List["M", "+", SubscriptBox["n", "2"]]], ",", SubscriptBox["n", "1"]]], "]"]]], RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", "k"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "2"], ",", RowBox[List["M", "-", "k"]]]], "}"]], ",", RowBox[List["{", RowBox[List["L", ",", "M"]], "}"]]]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "1"], ",", "k", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n", "2"], ",", RowBox[List["M", "-", "k"]], ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]], "\[Equal]", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", SubscriptBox["n", "2"]]], "+", "1"]], ")"]]]], RowBox[List["4", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", "L"]], "+", "1"]], ")"]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["L", ",", "0"]], "}"]]]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["L", ",", "M", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "1"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["n", "2"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "2"], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["L", "\[Element]", "Integers"]], "\[And]", RowBox[List["M", "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["n", "1"], "-", SubscriptBox["n", "2"]]], "]"]], "\[LessEqual]", "L", "\[LessEqual]", RowBox[List[SubscriptBox["n", "1"], "+", SubscriptBox["n", "2"]]]]], "\[And]", RowBox[List[RowBox[List["-", "L"]], "\[LessEqual]", "M", "\[LessEqual]", "L"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> M </mi> <mo> - </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> M </mi> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> k </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> M </mi> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> L </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> M </mi> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "k", "\[MediumSpace]", "M"]], "-", "k"]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "L", "\[MediumSpace]", "M"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mi> k </mi> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mrow> <mi> M </mi> <mo> - </mo> <mi> k </mi> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> L </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> L </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mn> 0 </mn> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "0", "\[MediumSpace]", "0"]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["n", "1"], "\[MediumSpace]", SubscriptBox["n", "2"], "\[MediumSpace]", "L", "\[MediumSpace]", "0"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <mi> L </mi> <mi> M </mi> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> L </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> M </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ≤ </mo> <mi> L </mi> <mo> ≤ </mo> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> L </mi> </mrow> <mo> ≤ </mo> <mi> M </mi> <mo> ≤ </mo> <mi> L </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <max /> <apply> <plus /> <ci> M </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <ci> M </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> ClebschGordan </ci> <apply> <ci> AngleBracket </ci> <apply> <ci> VerticalSeparator </ci> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> k </ci> <ci> M </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> L </ci> <ci> M </ci> </apply> </apply> </apply> </apply> <apply> <ci> SphericalHarmonicY </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> <ci> ϑ </ci> <ci> φ </ci> </apply> <apply> <ci> SphericalHarmonicY </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> M </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> ϑ </ci> <ci> φ </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> L </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 0 </cn> </list> <list> <ci> L </ci> <cn type='integer'> 0 </cn> </list> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> L </ci> <ci> M </ci> <ci> ϑ </ci> <ci> φ </ci> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> ℕ </ci> </apply> <apply> <in /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> ℕ </ci> </apply> <apply> <in /> <ci> L </ci> <ci> ℤ </ci> </apply> <apply> <in /> <ci> M </ci> <integers /> </apply> <apply> <leq /> <apply> <abs /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <ci> L </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <leq /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> L </ci> </apply> <ci> M </ci> <ci> L </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", RowBox[List["Max", "[", RowBox[List[RowBox[List["M_", "-", SubscriptBox["n_", "2"]]], ",", RowBox[List["-", SubscriptBox["n_", "1"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List["M_", "+", SubscriptBox["n_", "2"]]], ",", SubscriptBox["n_", "1"]]], "]"]]], RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["n_", "1"], ",", "k_"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["n_", "2"], ",", RowBox[List["M_", "-", "k_"]]]], "}"]], ",", RowBox[List["{", RowBox[List["L_", ",", "M_"]], "}"]]]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "1"], ",", "k_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List[SubscriptBox["n_", "2"], ",", RowBox[List["M_", "-", "k_"]], ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["nn", "2"]]], "+", "1"]], ")"]]]], RowBox[List["4", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "L"]], "+", "1"]], ")"]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["nn", "1"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["nn", "2"], ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["L", ",", "0"]], "}"]]]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["L", ",", "M", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["nn", "1"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "1"], "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["nn", "2"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["nn", "2"], "\[GreaterEqual]", "0"]], "&&", RowBox[List["L", "\[Element]", "Integers"]], "&&", RowBox[List["M", "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List[SubscriptBox["nn", "1"], "-", SubscriptBox["nn", "2"]]], "]"]], "\[LessEqual]", "L", "\[LessEqual]", RowBox[List[SubscriptBox["nn", "1"], "+", SubscriptBox["nn", "2"]]]]], "&&", RowBox[List[RowBox[List["-", "L"]], "\[LessEqual]", "M", "\[LessEqual]", "L"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|