| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/05.10.23.0009.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Sum[(1/(n! Sqrt[(2 n + 1) (n - m)! (n + m)!])) SphericalHarmonicY[n, m, 
     \[CurlyTheta], \[CurlyPhi]] w^(n - m), {n, m, Infinity}] == 
  (((-Sin[\[CurlyTheta]]) E^(I \[CurlyPhi]))^m/(2^(m + 1) Sqrt[Pi] m!^2)) 
   Hypergeometric0F1[m + 1, w Cos[\[CurlyTheta]/2]^2] 
   Hypergeometric0F1[m + 1, (-w) Sin[\[CurlyTheta]/2]^2] /; 
 m >= 0 && Element[\[CurlyTheta], Reals] && Element[\[CurlyPhi], Reals] && 
  Abs[w] < 1 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "m"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["n", "!"]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], SuperscriptBox["w", RowBox[List["n", "-", "m"]]]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "1"]]], SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "!"]], ")"]], "2"]]]], RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["m", "+", "1"]], ",", RowBox[List["w", " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["m", "+", "1"]], ",", RowBox[List[RowBox[List["-", "w"]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> n </mi>  <mo> = </mo>  <mi> m </mi>  </mrow>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mrow>  <mrow>  <msubsup>  <mi> Y </mi>  <mi> n </mi>  <mi> m </mi>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> ϑ </mi>  <mo> , </mo>  <mi> φ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> w </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ϑ </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> φ </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> m </mi>  <mo> ! </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mi> w </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mi> ϑ </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["m", "+", "1"]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[RowBox[List["w", " ", RowBox[List[SuperscriptBox["cos", "2"], "(", FractionBox["\[CurlyTheta]", "2"], ")"]]]], Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> w </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mfrac>  <mi> ϑ </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["m", "+", "1"]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", "w"]], " ", RowBox[List[SuperscriptBox["sin", "2"], "(", FractionBox["\[CurlyTheta]", "2"], ")"]]]], Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ≥ </mo>  <mn> 0 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ϑ </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> φ </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℝ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> w </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> < </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <sum />  <bvar>  <ci> n </ci>  </bvar>  <lowlimit>  <ci> m </ci>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <ci> SphericalHarmonicY </ci>  <ci> n </ci>  <ci> m </ci>  <ci> ϑ </ci>  <ci> φ </ci>  </apply>  <apply>  <power />  <ci> w </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  <apply>  <factorial />  <apply>  <plus />  <ci> m </ci>  <ci> n </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <sin />  <ci> ϑ </ci>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <imaginaryi />  <ci> φ </ci>  </apply>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> m </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Hypergeometric0F1 </ci>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <ci> w </ci>  <apply>  <power />  <apply>  <cos />  <apply>  <times />  <ci> ϑ </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric0F1 </ci>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> w </ci>  </apply>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> ϑ </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <geq />  <ci> m </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <in />  <ci> ϑ </ci>  <reals />  </apply>  <apply>  <in />  <ci> φ </ci>  <reals />  </apply>  <apply>  <lt />  <apply>  <abs />  <ci> w </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "m_"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", SuperscriptBox["w_", RowBox[List["n_", "-", "m_"]]]]], RowBox[List[RowBox[List["n_", "!"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "-", "m_"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "+", "m_"]], ")"]], "!"]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["m", "+", "1"]], ",", RowBox[List["w", " ", SuperscriptBox[RowBox[List["Cos", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["m", "+", "1"]], ",", RowBox[List[RowBox[List["-", "w"]], " ", SuperscriptBox[RowBox[List["Sin", "[", FractionBox["\[CurlyTheta]", "2"], "]"]], "2"]]]]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "1"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "!"]], ")"]], "2"]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "&&", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |