Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Polynomials > SphericalHarmonicY[n,m,theta,phi] > Summation > Infinite summation





http://functions.wolfram.com/05.10.23.0011.01









  


  










Input Form





Sum[(((n + m - p)! (n - m + p - 1)!)/(n! Sqrt[(2 n + 1) (n - m)! (n + m)!])) SphericalHarmonicY[n, m, \[CurlyTheta], \[CurlyPhi]] w^(n - m), {n, m, Infinity}] == (((2 m - p)! (p - 1)!)/(2^(m + 1) Sqrt[Pi] m!^2)) ((-Sin[\[CurlyTheta]]) E^(I \[CurlyPhi]))^m Hypergeometric2F1[p, 2 m - p + 1, m + 1, (1 - w - Sqrt[1 - 2 w Cos[\[CurlyTheta]] + w^2])/2] Hypergeometric2F1[p, 2 m - p + 1, m + 1, (1 + w - Sqrt[1 - 2 w Cos[\[CurlyTheta]] + w^2])/2] /; m >= 0 && Element[p, Integers] && p >= 0 && p <= 2 m && Element[\[CurlyTheta], Reals] && Element[\[CurlyPhi], Reals] && Abs[w] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "m"]], "\[Infinity]"], " ", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m", "-", "p"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m", "+", "p", "-", "1"]], ")"]], "!"]]]], RowBox[List[RowBox[List["n", "!"]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]]]]]]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], " ", SuperscriptBox["w", RowBox[List["n", "-", "m"]]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "-", "p"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "!"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "1"]]], SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "!"]], ")"]], "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["2", "m"]], "-", "p", "+", "1"]], ",", RowBox[List["m", "+", "1"]], ",", FractionBox[RowBox[List["1", "-", "w", "-", SqrtBox[RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]], "2"]]], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["2", "m"]], "-", "p", "+", "1"]], ",", RowBox[List["m", "+", "1"]], ",", FractionBox[RowBox[List["1", "+", "w", "-", SqrtBox[RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]], "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["p", "\[LessEqual]", RowBox[List["2", "m"]]]], "\[And]", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> n </mi> <mo> = </mo> <mi> m </mi> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;p&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, &quot;p&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;w&quot;, &quot;-&quot;, SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot;w&quot;, &quot; &quot;, FormBox[RowBox[List[&quot;cos&quot;, &quot;(&quot;, &quot;\[CurlyTheta]&quot;, &quot;)&quot;]], TraditionalForm]]], &quot;+&quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]]]]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> , </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> w </mi> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;p&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, &quot;p&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;+&quot;, &quot;w&quot;, &quot;-&quot;, SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot;w&quot;, &quot; &quot;, FormBox[RowBox[List[&quot;cos&quot;, &quot;(&quot;, &quot;\[CurlyTheta]&quot;, &quot;)&quot;]], TraditionalForm]]], &quot;+&quot;, SuperscriptBox[&quot;w&quot;, &quot;2&quot;]]]]]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8804; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#977; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#966; </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> w </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <ci> m </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <ci> m </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <ci> &#977; </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> &#966; </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> w </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <geq /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> p </ci> <ci> &#8469; </ci> </apply> <apply> <leq /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <in /> <ci> &#977; </ci> <reals /> </apply> <apply> <in /> <ci> &#966; </ci> <reals /> </apply> <apply> <lt /> <apply> <abs /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "m_"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n_", "+", "m_", "-", "p_"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "-", "m_", "+", "p_", "-", "1"]], ")"]], "!"]]]], ")"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", SuperscriptBox["w_", RowBox[List["n_", "-", "m_"]]]]], RowBox[List[RowBox[List["n_", "!"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "-", "m_"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "+", "m_"]], ")"]], "!"]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "-", "p"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["p", "-", "1"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["2", " ", "m"]], "-", "p", "+", "1"]], ",", RowBox[List["m", "+", "1"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "w", "-", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]], ")"]]]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["p", ",", RowBox[List[RowBox[List["2", " ", "m"]], "-", "p", "+", "1"]], ",", RowBox[List["m", "+", "1"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "w", "-", SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]], ")"]]]]]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "1"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "!"]], ")"]], "2"]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "0"]], "&&", RowBox[List["p", "\[LessEqual]", RowBox[List["2", " ", "m"]]]], "&&", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "&&", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29