|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.10.23.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[I^(n - m) Sqrt[((2 n + 1) (n + m)!)/(n - m)!] BesselJ[n + 1/2, w]
SphericalHarmonicY[n, m, \[CurlyTheta], \[CurlyPhi]],
{n, m, Infinity}] == (Sqrt[w] ((-w) Sin[\[CurlyTheta]] E^(I \[CurlyPhi]))^
m E^(I w Cos[\[CurlyTheta]]))/(Sqrt[2] Pi) /;
m >= 0 && Element[\[CurlyTheta], Reals] && Element[\[CurlyPhi], Reals]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "m"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "-", "m"]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]]]], RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", "w"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]]]]]], "\[Equal]", FractionBox[RowBox[List[SqrtBox["w"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "w"]], " ", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]]]], RowBox[List[SqrtBox["2"], "\[Pi]"]]]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "\[And]", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mi> m </mi> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <msub> <mi> J </mi> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> </msub> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> Y </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> , </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> w </mi> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> w </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> φ </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> w </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ≥ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> ϑ </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> φ </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <ci> m </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> w </ci> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> n </ci> <ci> m </ci> <ci> ϑ </ci> <ci> φ </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> w </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <apply> <sin /> <ci> ϑ </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> φ </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> w </ci> <apply> <cos /> <ci> ϑ </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <geq /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> ϑ </ci> <reals /> </apply> <apply> <in /> <ci> φ </ci> <reals /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "m_"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["n_", "-", "m_"]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n_", "+", "m_"]], ")"]], "!"]]]], RowBox[List[RowBox[List["(", RowBox[List["n_", "-", "m_"]], ")"]], "!"]]]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["n_", "+", FractionBox["1", "2"]]], ",", "w_"]], "]"]], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["n_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox["w"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "w"]], " ", RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]]]]], RowBox[List[SqrtBox["2"], " ", "\[Pi]"]]], "/;", RowBox[List[RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["\[CurlyTheta]", "\[Element]", "Reals"]], "&&", RowBox[List["\[CurlyPhi]", "\[Element]", "Reals"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|