  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/05.18.03.0008.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    ZernikeR[n, n - 2, z] == n z^n - (n - 1) z^(n - 2) /; 
 Element[n, Integers] && n >= 2 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", RowBox[List["n", "-", "2"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["n", " ", SuperscriptBox["z", "n"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", SuperscriptBox["z", RowBox[List["n", "-", "2"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "2"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mi> R </mi>  <mi> n </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> n </mi>  <mo> ≥ </mo>  <mn> 2 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> ZernikeR </ci>  <ci> n </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> n </ci>  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <integers />  </apply>  <apply>  <geq />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZernikeR", "[", RowBox[List["n_", ",", RowBox[List["n_", "-", "2"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["n", " ", SuperscriptBox["z", "n"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", SuperscriptBox["z", RowBox[List["n", "-", "2"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "2"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |