Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ZernikeR






Mathematica Notation

Traditional Notation









Polynomials > ZernikeR[n,m,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/05.18.06.0005.01









  


  










Input Form





ZernikeR[n, m, z] == Cos[((n - m)/2) Pi] z^m Sum[(((-1)^j ((n + m)/2 + j)!)/(j! (j + m)! ((n - m)/2 - j)!)) z^(2 j), {j, 0, (n - m)/2}] /; Element[n, Integers] && n >= 0 && Element[m, Integers] && m >= 0 && n >= m










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", "m", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "\[Pi]"]], "]"]], SuperscriptBox["z", "m"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], FractionBox[RowBox[List["n", "-", "m"]], "2"]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["n", "+", "m"]], "2"], "+", "j"]], ")"]], "!"]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "-", "j"]], ")"]], "!"]]]]], SuperscriptBox["z", RowBox[List["2", " ", "j"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8805; </mo> <mi> m </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ZernikeR </ci> <ci> n </ci> <ci> m </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <cos /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> m </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <geq /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZernikeR", "[", RowBox[List["n_", ",", "m_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", "\[Pi]"]], "]"]], " ", SuperscriptBox["z", "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], FractionBox[RowBox[List["n", "-", "m"]], "2"]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["n", "+", "m"]], "2"], "+", "j"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "j"]]]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "-", "j"]], ")"]], "!"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02