|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.18.11.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ZernikeR[m + 2 k, m, z] == SeriesTerm[
(1 + w - Sqrt[1 + 2 w (1 - 2 z^2) + w^2])^m/
((2 z w)^m Sqrt[1 + 2 w (1 - 2 z^2) + w^2]), {w, 0, k}] /;
Element[m, Integers] && m >= 0 && Element[k, Integers] && k >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List[RowBox[List["m", "+", RowBox[List["2", " ", "k"]]]], ",", "m", ",", "z"]], "]"]], "\[Equal]", RowBox[List["SeriesTerm", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "w", "-", SqrtBox[RowBox[List["1", "+", RowBox[List["2", "w", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", SuperscriptBox["w", "2"]]]]]], ")"]], "m"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", "z", " ", "w"]], ")"]], "m"], SqrtBox[RowBox[List["1", "+", RowBox[List["2", "w", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", SuperscriptBox["w", "2"]]]]]]], ",", RowBox[List["{", RowBox[List["w", ",", "0", ",", "k"]], "}"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <msup> <mi> w </mi> <mi> k </mi> </msup> <mtext> </mtext> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <msup> <mi> w </mi> <mi> k </mi> </msup> <mtext> </mtext> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> w </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZernikeR", "[", RowBox[List[RowBox[List["m_", "+", RowBox[List["2", " ", "k_"]]]], ",", "m_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["SeriesTerm", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "w", "-", SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "w", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", SuperscriptBox["w", "2"]]]]]], ")"]], "m"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z", " ", "w"]], ")"]], "m"], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "w", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", SuperscriptBox["w", "2"]]]]]]], ",", RowBox[List["{", RowBox[List["w", ",", "0", ",", "k"]], "}"]]]], "]"]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|