|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/05.18.26.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ZernikeR[n, m, z] == Piecewise[
{{(-1)^((n - m)/2) z^m JacobiP[(n - m)/2, m, 0, 1 - 2 z^2],
Element[(n - m)/2, Integers]}}, 0] /; Element[n, Integers] && n >= 0 &&
Element[m, Integers] && m >= 0 && n >= m
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", "m", ",", "z"]], "]"]], "\[Equal]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["n", "-", "m"]], "2"]], SuperscriptBox["z", "m"], " ", RowBox[List["JacobiP", "[", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], ",", "m", ",", "0", ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]], "]"]]]], ",", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "\[Element]", "Integers"]]]], "}"]], "}"]], ",", "0"]], "]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mo>  </mo> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <mi> P </mi> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ≥ </mo> <mi> m </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ZernikeR </ci> <ci> n </ci> <ci> m </ci> <ci> z </ci> </apply> <apply> <ci> Piecewise </ci> <list> <list> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> m </ci> </apply> <apply> <ci> JacobiP </ci> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> m </ci> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <integers /> </apply> </list> </list> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> m </ci> <ci> ℕ </ci> </apply> <apply> <geq /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZernikeR", "[", RowBox[List["n_", ",", "m_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], FractionBox[RowBox[List["n", "-", "m"]], "2"]], " ", SuperscriptBox["z", "m"], " ", RowBox[List["JacobiP", "[", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], ",", "m", ",", "0", ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]], "]"]]]], RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "\[Element]", "Integers"]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|