|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.06.02.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LerchPhi[z, s, -n] == LerchPhiClassicalRegularized[z, s, -n] -
Sum[z^k/(k - n)^s - z^k/((k - n)^2)^(s/2), {k, 0, n - 1}] /;
Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", RowBox[List["-", "n"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["LerchPhiClassicalRegularized", "[", RowBox[List["z", ",", "s", ",", RowBox[List["-", "n"]]]], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "s"]], "-", FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> Φ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[CapitalPhi]", "(", RowBox[List[TagBox["z", Rule[Editable, True]], ",", TagBox["s", Rule[Editable, True]], ",", RowBox[List["-", "n"]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mover> <mi> Φ </mi> <mo> ~ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mi> Φ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[CapitalPhi]", "(", RowBox[List[TagBox["z", Rule[Editable, True]], ",", TagBox["s", Rule[Editable, True]], ",", RowBox[List["-", "n"]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mover> <mi> Φ </mi> <mo> ~ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhi", "[", RowBox[List["z_", ",", "s_", ",", RowBox[List["-", "n_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["LerchPhiClassicalRegularized", "[", RowBox[List["z", ",", "s", ",", RowBox[List["-", "n"]]]], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "s"]], "-", FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|