|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.06.03.0055.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LerchPhiClassicalRegularized[z, s, 5] ==
(-z - z^2/2^s - z^3/3^s - z^4/4^s + PolyLog[s, z])/z^5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["LerchPhiClassicalRegularized", "[", RowBox[List["z", ",", "s", ",", "5"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["-", "z"]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List[SuperscriptBox["3", RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["PolyLog", "[", RowBox[List["s", ",", "z"]], "]"]]]], SuperscriptBox["z", "5"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mover> <mi> Φ </mi> <mo> ~ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mn> 4 </mn> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mi> z </mi> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> s </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> OverTilde </ci> <ci> Φ </ci> </apply> <ci> z </ci> <ci> s </ci> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <ci> PolyLog </ci> <ci> s </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhiClassicalRegularized", "[", RowBox[List["z_", ",", "s_", ",", "5"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", "z"]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List[SuperscriptBox["3", RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["PolyLog", "[", RowBox[List["s", ",", "z"]], "]"]]]], SuperscriptBox["z", "5"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|