|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.06.04.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Singularities[LerchPhiClassical[z, s, a], a] ==
{SequenceList[{-n, s}, Element[n, Integers] && n >= 0],
{ComplexInfinity, Infinity}} /; Element[s, Integers] && s > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], ",", "a"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", "s"]], "}"]], ",", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]], "/;", RowBox[List[RowBox[List["s", "\[Element]", "Integers"]], "\[And]", RowBox[List["s", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> 𝒮𝒾𝓃ℊ </mi> <mi> a </mi> </msub> <mo> ( </mo> <semantics> <mrow> <mover> <mi> Φ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox["\[CapitalPhi]", "^"], "(", RowBox[List[TagBox["z", Rule[Editable, True]], ",", "s", ",", TagBox["a", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`a, $CellContext`b], Zeta[$CellContext`a, $CellContext`b]]]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> s </mi> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> s </mi> <mo> ∉ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒮𝒾𝓃ℊ </ci> <ci> a </ci> </apply> <apply> <ci> Zeta </ci> <ci> z </ci> <ci> a </ci> </apply> </apply> <list> <list> <apply> <ci> Condition </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> s </ci> </list> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </list> <list> <apply> <ci> OverTilde </ci> <infinity /> </apply> <infinity /> </list> </list> </apply> <apply> <notin /> <ci> s </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", "s"]], "}"]], ",", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]], "/;", RowBox[List[RowBox[List["s", "\[Element]", "Integers"]], "&&", RowBox[List["s", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|