|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.06.04.0045.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Limit[LerchPhiClassical[x - I \[Epsilon], s, a], \[Epsilon] -> Plus[0]] ==
LerchPhiClassical[x, s, a] /; x > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]], ",", "s", ",", "a"]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", " ", RowBox[List["LerchPhiClassical", "[", RowBox[List["x", ",", "s", ",", "a"]], "]"]]]], "/;", RowBox[List["x", ">", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> ϵ </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <mo> + </mo> <mn> 0 </mn> </mrow> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <semantics> <mrow> <mover> <mi> Φ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ϵ </mi> </mrow> </mrow> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox["\[CapitalPhi]", "^"], "(", RowBox[List[TagBox[RowBox[List["x", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]], Rule[Editable, True]], ",", TagBox["s", Rule[Editable, True]], ",", TagBox["a", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> </mrow> <mo> ⩵ </mo> <semantics> <mrow> <mover> <mi> Φ </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> x </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox["\[CapitalPhi]", "^"], "(", RowBox[List[TagBox["x", Rule[Editable, True]], ",", TagBox["s", Rule[Editable, True]], ",", TagBox["a", Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <limit /> <bvar> <ci> ϵ </ci> </bvar> <condition> <apply> <tendsto /> <ci> ϵ </ci> <apply> <plus /> <cn type='integer'> 0 </cn> </apply> </apply> </condition> <apply> <ci> LerchPhi </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> ϵ </ci> </apply> </apply> </apply> <ci> s </ci> <ci> a </ci> </apply> </apply> <apply> <ci> LerchPhi </ci> <ci> x </ci> <ci> s </ci> <ci> a </ci> </apply> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[RowBox[List["x_", "-", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]], ",", "s_", ",", "a_"]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List["x", ",", "s", ",", "a"]], "]"]], "/;", RowBox[List["x", ">", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|