
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.06.06.0019.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
LerchPhi[z, s, a] ==
Sum[(1/k!) (Subscript[z, 0]^(Max[Floor[-Re[a]], 0] - k + 1)
Sum[StirlingS1[k, j] Binomial[j, p] LerchPhi[Subscript[z, 0], s - p,
a + Max[Floor[-Re[a]], 0] + 1] (-a)^(j - p), {j, 1, k}, {p, 0, j}] +
Sum[(Pochhammer[j + 1, k] Subscript[z, 0]^j)/((k + a + j)^2)^(s/2),
{j, 0, Floor[-Re[a]] - k}]) (z - Subscript[z, 0])^k, {k, 0, Infinity}]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["z", "0", RowBox[List[RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "-", "k", "+", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "j"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "j"]], "]"]], RowBox[List["Binomial", "[", RowBox[List["j", ",", "p"]], "]"]], RowBox[List["(", RowBox[List["LerchPhi", "[", RowBox[List[SubscriptBox["z", "0"], ",", RowBox[List["s", "-", "p"]], ",", RowBox[List["a", "+", RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "+", "1"]]]], "]"]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List["j", "-", "p"]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "-", "k"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["j", "+", "1"]], ",", "k"]], "]"]], " ", SubsuperscriptBox["z", "0", "j"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a", "+", "j"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> Φ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[CapitalPhi]", "(", RowBox[List[TagBox["z", LerchPhi, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["s", LerchPhi, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["a", LerchPhi, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo>  </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <msubsup> <mi> z </mi> <mn> 0 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msubsup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> j </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["j", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox["p", Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mi> Φ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mrow> <mi> s </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[CapitalPhi]", "(", RowBox[List[TagBox[SubscriptBox["z", "0"], LerchPhi, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["s", "-", "p"]], LerchPhi, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["a", "+", RowBox[List["max", "(", RowBox[List[RowBox[List["\[LeftFloor]", RowBox[List["-", RowBox[List["Re", "(", "a", ")"]]]], "\[RightFloor]"]], ",", "0"]], ")"]], "+", "1"]], LerchPhi, Rule[Editable, True], Rule[Selectable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> <mo> - </mo> <mi> k </mi> </mrow> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mi> j </mi> </msubsup> </mrow> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <max /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> j </ci> <ci> p </ci> </apply> <apply> <ci> LerchPhi </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <max /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> j </ci> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> s </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhi", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "0", RowBox[List[RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "-", "k", "+", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "j"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "p"]], "]"]], " ", RowBox[List["LerchPhi", "[", RowBox[List[SubscriptBox["zz", "0"], ",", RowBox[List["s", "-", "p"]], ",", RowBox[List["a", "+", RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "+", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List["j", "-", "p"]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], "-", "k"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["j", "+", "1"]], ",", "k"]], "]"]], " ", SubsuperscriptBox["zz", "0", "j"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a", "+", "j"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|