
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/10.06.06.0041.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
LerchPhi[z, s, a] ==
(z^n Sum[(Pochhammer[s, k]/((-Subscript[a, 0] - n)^k k!))
(a - Subscript[a, 0])^k, {k, 0, Infinity}])/
(I^s E^(I Pi s Floor[(-(1/Pi)) (Arg[(a + n)/(Subscript[a, 0] + n)] +
Arg[(-I) (Subscript[a, 0] + n)])]) ((-I) (Subscript[a, 0] + n))^
s) + Sum[(z^k/(-Subscript[a, 0] - k)^s)
Sum[(Pochhammer[s, j]/((Subscript[a, 0] + k)^j j!))
(a - Subscript[a, 0])^j, {j, 0, Infinity}], {k, 0, n - 1}] +
z^(n + 1) LerchPhi[z, s, 1 + a + n] /; (a -> Subscript[a, 0]) &&
Re[Subscript[a, 0]] == -n && Element[n, Integers] && n >= 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "s"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "s", " ", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "\[Pi]"]]], RowBox[List["(", RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["a", "+", "n"]], RowBox[List[SubscriptBox["a", "0"], "+", "n"]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "0"], "+", "n"]], ")"]]]], "]"]]]], ")"]]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["a", "0"], "+", "n"]], ")"]]]], ")"]], RowBox[List["-", "s"]]], SuperscriptBox["z", "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["a", "0"]]], "-", "n"]], ")"]], RowBox[List["-", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List["s", ",", "k"]], "]"]]]], RowBox[List["k", "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]], "k"]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["a", "0"]]], "-", "k"]], ")"]], "s"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "0"], "+", "k"]], ")"]], RowBox[List["-", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List["s", ",", "j"]], "]"]]]], RowBox[List["j", "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]], "j"]]]]]]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["n", "+", "1"]]], RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", RowBox[List["1", "+", "a", "+", "n"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["a", "0"]]], ")"]], "\[And]", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "0"], "]"]], "\[Equal]", RowBox[List["-", "n"]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> Φ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[CapitalPhi]", "(", RowBox[List[TagBox["z", LerchPhi, Rule[Editable, True]], ",", TagBox["s", LerchPhi, Rule[Editable, True]], ",", TagBox["a", LerchPhi, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]]] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> s </mi> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> π </mi> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "s", ")"]], "k"], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "s", ")"]], "j"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mrow> <mi> Φ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[CapitalPhi]", "(", RowBox[List[TagBox["z", LerchPhi, Rule[Editable, True]], ",", TagBox["s", LerchPhi, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "n", "+", "1"]], LerchPhi, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> <ci> s </ci> <apply> <floor /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <arg /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <ci> s </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> k </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <ci> s </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <eq /> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhi", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "s"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]", " ", "s", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Arg", "[", FractionBox[RowBox[List["a", "+", "n"]], RowBox[List[SubscriptBox["aa", "0"], "+", "n"]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["aa", "0"], "+", "n"]], ")"]]]], "]"]]]], "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["aa", "0"], "+", "n"]], ")"]]]], ")"]], RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["aa", "0"]]], "-", "n"]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List["s", ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox["z", "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["aa", "0"], "+", "k"]], ")"]], RowBox[List["-", "j"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List["s", ",", "j"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]], "j"]]], RowBox[List["j", "!"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SubscriptBox["aa", "0"]]], "-", "k"]], ")"]], "s"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["n", "+", "1"]]], " ", RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", RowBox[List["1", "+", "a", "+", "n"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["aa", "0"]]], ")"]], "&&", RowBox[List[RowBox[List["Re", "[", SubscriptBox["aa", "0"], "]"]], "\[Equal]", RowBox[List["-", "n"]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|