Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Differentiation > Fractional integro-differentiation > With respect to s > For Phi^(z,s,a)





http://functions.wolfram.com/10.06.20.0013.01









  


  










Input Form





D[LerchPhiClassical[z, s, a], {s, \[Alpha]}] == Sum[(((-s) Log[a + k])^\[Alpha] GammaRegularized[-\[Alpha], 0, (-s) Log[a + k]] z^k)/(a + k)^s, {k, 0, Infinity}]/s^\[Alpha] /; Abs[z] < 1 || (Abs[z] == 1 && Re[s] > 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["s", ",", "\[Alpha]"]], "}"]]], RowBox[List["LerchPhiClassical", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["s", RowBox[List["-", "\[Alpha]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", "k"]], "]"]]]], ")"]], "\[Alpha]"], RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", "k"]], "]"]]]]]], "]"]], " ", SuperscriptBox["z", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]], ")"]]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <semantics> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[CapitalPhi]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> s </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mi> s </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> s </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ln /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> <ci> &#945; </ci> </apply> <apply> <ci> GammaRegularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 0 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ln /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <and /> <apply> <eq /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> s </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["s_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["LerchPhiClassical", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["s", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", "k"]], "]"]]]], ")"]], "\[Alpha]"], " ", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", "0", ",", RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", "k"]], "]"]]]]]], "]"]], " ", SuperscriptBox["z", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", "1"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29