Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[2,z] > Identities > Functional identities > Involving five dilogarithms





http://functions.wolfram.com/10.07.17.0027.01









  


  










Input Form





PolyLog[2, (z (1 - w)^2)/(w (1 - z)^2)] == PolyLog[2, -((z (1 - w))/(1 - z))] + PolyLog[2, -((1 - w)/(w (1 - z)))] + PolyLog[2, (z (1 - w))/(w (1 - z))] + PolyLog[2, (1 - w)/(1 - z)] + (1/2) Log[w]^2 /; (w > 0 && Element[z, Reals]) || (z > w && z w > 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["z", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], "2"]]], RowBox[List["w", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["z", RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]]]], RowBox[List["1", "-", "z"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["1", "-", "w"]], RowBox[List["w", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["z", RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]]]], RowBox[List["w", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["1", "-", "w"]], RowBox[List["1", "-", "z"]]]]], "]"]], "+", RowBox[List[FractionBox["1", "2"], SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", ">", "0"]], "\[And]", RowBox[List["z", "\[Element]", "Reals"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["z", ">", "w"]], "\[And]", RowBox[List[RowBox[List["z", " ", "w"]], ">", "1"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> w </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mrow> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> z </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &gt; </mo> <mi> w </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> w </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <ln /> <ci> w </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <and /> <apply> <gt /> <ci> w </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> z </ci> <reals /> </apply> </apply> <apply> <and /> <apply> <gt /> <ci> z </ci> <ci> w </ci> </apply> <apply> <gt /> <apply> <times /> <ci> z </ci> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["z_", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w_"]], ")"]], "2"]]], RowBox[List["w_", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z_"]], ")"]], "2"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]]]], RowBox[List["1", "-", "z"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["1", "-", "w"]], RowBox[List["w", " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]]]], RowBox[List["w", " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["1", "-", "w"]], RowBox[List["1", "-", "z"]]]]], "]"]], "+", FractionBox[SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"], "2"]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["w", ">", "0"]], "&&", RowBox[List["z", "\[Element]", "Reals"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["z", ">", "w"]], "&&", RowBox[List[RowBox[List["z", " ", "w"]], ">", "1"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29