|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.09.13.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(-1 + p + z) Derivative[1][w][z]^2 + z Derivative[1][w][z]
(2 (-7 + 3 p + 7 z + 2 p z) Derivative[2][w][z] +
z ((12 (-1 + z) + 7 p (-1 + 2 z)) Derivative[3][w][z] +
z ((-2 - 7 p + 2 z + 8 p z) Derivative[4][w][z] +
p (-1 + z) z Derivative[5][w][z]))) +
z^2 ((p (25 - 4 z) + 49 (-1 + z)) Derivative[2][w][z]^2 +
z^2 ((p (17 - 11 z) + 36 (-1 + z)) Derivative[3][w][z]^2 +
z^2 (-1 + p + z - p z) Derivative[4][w][z]^2 + z Derivative[3][w][z]
((p (3 - 2 z) + 12 (-1 + z)) Derivative[4][w][z] +
p (-1 + z) z Derivative[5][w][z])) + z Derivative[2][w][z]
((84 (-1 + z) + p (19 + 6 z)) Derivative[3][w][z] +
z ((-14 - 13 p + 14 z + 16 p z) Derivative[4][w][z] +
3 p (-1 + z) z Derivative[5][w][z]))) == 0 /;
w[z] == PolyLog[3, p, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "p", "+", "z"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["z", " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["3", " ", "p"]], "+", RowBox[List["7", " ", "z"]], "+", RowBox[List["2", " ", "p", " ", "z"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]], "+", RowBox[List["7", " ", "p", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["7", " ", "p"]], "+", RowBox[List["2", " ", "z"]], "+", RowBox[List["8", " ", "p", " ", "z"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", "z", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "5", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["25", "-", RowBox[List["4", " ", "z"]]]], ")"]]]], "+", RowBox[List["49", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["17", "-", RowBox[List["11", " ", "z"]]]], ")"]]]], "+", RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "p", "+", "z", "-", RowBox[List["p", " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["z", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "z"]]]], ")"]]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", "z", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "5", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["z", " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["84", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]], "+", RowBox[List["p", " ", RowBox[List["(", RowBox[List["19", "+", RowBox[List["6", " ", "z"]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "14"]], "-", RowBox[List["13", " ", "p"]], "+", RowBox[List["14", " ", "z"]], "+", RowBox[List["16", " ", "p", " ", "z"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["3", " ", "p", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", "z", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "5", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["PolyLog", "[", RowBox[List["3", ",", "p", ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "5", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 84 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 13 </mn> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 14 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 14 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "5", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 49 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 25 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "3", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "4", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <semantics> <mrow> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "5", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <msub> <semantics> <mi> S </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mn> 3 </mn> <mo> , </mo> <mi> p </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <plus /> <cn type='integer'> 17 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 5 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> p </ci> </apply> <ci> p </ci> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 84 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> <cn type='integer'> 19 </cn> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13 </cn> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 14 </cn> <ci> z </ci> </apply> <cn type='integer'> -14 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> p </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 5 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 49 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <plus /> <cn type='integer'> 25 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <ci> p </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 4 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 5 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> p </ci> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <ci> p </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "p_", "+", "z_"]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["z_", " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["3", " ", "p_"]], "+", RowBox[List["7", " ", "z_"]], "+", RowBox[List["2", " ", "p_", " ", "z_"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["z_", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]]]], "+", RowBox[List["7", " ", "p_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "z_"]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["z_", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["7", " ", "p_"]], "+", RowBox[List["2", " ", "z_"]], "+", RowBox[List["8", " ", "p_", " ", "z_"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["p_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]], " ", "z_", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "5", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["p_", " ", RowBox[List["(", RowBox[List["25", "-", RowBox[List["4", " ", "z_"]]]], ")"]]]], "+", RowBox[List["49", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["p_", " ", RowBox[List["(", RowBox[List["17", "-", RowBox[List["11", " ", "z_"]]]], ")"]]]], "+", RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "p_", "+", "z_", "-", RowBox[List["p_", " ", "z_"]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["z_", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["p_", " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "z_"]]]], ")"]]]], "+", RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["p_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]], " ", "z_", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "5", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["z_", " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["84", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]]]], "+", RowBox[List["p_", " ", RowBox[List["(", RowBox[List["19", "+", RowBox[List["6", " ", "z_"]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["z_", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "14"]], "-", RowBox[List["13", " ", "p_"]], "+", RowBox[List["14", " ", "z_"]], "+", RowBox[List["16", " ", "p_", " ", "z_"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "4", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["3", " ", "p_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z_"]], ")"]], " ", "z_", " ", RowBox[List[SuperscriptBox["w", TagBox[RowBox[List["(", "5", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["PolyLog", "[", RowBox[List["3", ",", "p", ",", "z"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|