|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.03.06.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RiemannSiegelTheta[z] \[Proportional]
(-(1/4)) (2 EulerGamma + Pi + 2 Log[8 Pi]) z +
(1/24) (Pi^3 + 28 Zeta[3]) z^3 - (1/480) (5 Pi^5 + 1488 Zeta[5]) z^5 +
O[z^7]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "EulerGamma"]], "+", "\[Pi]", "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["8", " ", "\[Pi]"]], "]"]]]]]], ")"]], "z"]], "+", RowBox[List[FractionBox["1", "24"], RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "3"], "+", RowBox[List["28", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]], SuperscriptBox["z", "3"]]], " ", "-", RowBox[List[FractionBox["1", "480"], RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["\[Pi]", "5"]]], "+", RowBox[List["1488", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]], SuperscriptBox["z", "5"]]], "+", RowBox[List["O", "[", SuperscriptBox["z", "7"], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> ϑ </mi> <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> π </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["3", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 3 </mn> </msup> </mrow> <mn> 24 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 1488 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 5 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["5", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 5 </mn> </msup> </mrow> </mrow> <mn> 480 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> RiemannSiegelTheta </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 8 </cn> <pi /> </apply> </apply> </apply> <pi /> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 24 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1488 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <pi /> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 480 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "EulerGamma"]], "+", "\[Pi]", "+", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["8", " ", "\[Pi]"]], "]"]]]]]], ")"]], " ", "z"]], "+", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "3"], "+", RowBox[List["28", " ", RowBox[List["Zeta", "[", "3", "]"]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List[FractionBox["1", "480"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["\[Pi]", "5"]]], "+", RowBox[List["1488", " ", RowBox[List["Zeta", "[", "5", "]"]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "7"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|