|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.03.06.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RiemannSiegelTheta[z] == RiemannSiegelTheta[Subscript[z, 0]] +
(1/4) (-2 Log[Pi] + PolyGamma[1/4 - (I Subscript[z, 0])/2] +
PolyGamma[1/4 + (I Subscript[z, 0])/2]) (z - Subscript[z, 0]) +
(I/8)
Sum[((1/(j + 2)) ((I^j ((-1)^j Zeta[j + 2, 1/4 + (I Subscript[z, 0])/2] -
Zeta[j + 2, 1/4 - (I Subscript[z, 0])/2]))/2^j))
(z - Subscript[z, 0])^(2 + j), {j, 0, Infinity}] /;
Subscript[z, 0]^2 != -(1/2 + 2 k)^2 && Element[k, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["RiemannSiegelTheta", "[", SubscriptBox["z", "0"], "]"]], "+", RowBox[List[FractionBox["1", "4"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["\[ImaginaryI]", "8"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[FractionBox["1", RowBox[List["j", "+", "2"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "j"], SuperscriptBox["2", RowBox[List["-", "j"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "+", "2"]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]]]], "]"]]]], "-", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "+", "2"]], ",", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]]]], "]"]]]], ")"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["2", "+", "j"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubsuperscriptBox["z", "0", "2"], "\[NotEqual]", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", "k"]]]], ")"]], "2"]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> ϑ </mi> <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <semantics> <mi> ϑ </mi> <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> ⅈ </mi> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mi> ⅈ </mi> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["j", "+", "2"]], Rule[Editable, True]], ",", RowBox[List[FractionBox["1", "4"], "+", TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"], Rule[Editable, True]]]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["j", "+", "2"]], Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> ≠ </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> RiemannSiegelTheta </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> RiemannSiegelTheta </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ln /> <pi /> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> j </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <neq /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", SubscriptBox["zz", "0"], "]"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "+", RowBox[List[FractionBox["1", "8"], " ", "\[ImaginaryI]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "j"], " ", SuperscriptBox["2", RowBox[List["-", "j"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "+", "2"]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]]]], "]"]]]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "+", "2"]], ",", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]]]], "]"]]]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], RowBox[List["2", "+", "j"]]]]], RowBox[List["j", "+", "2"]]]]]]]]], "/;", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "0", "2"], "\[NotEqual]", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]]]], ")"]], "2"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|