| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/10.03.06.0012.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | RiemannSiegelTheta[z] \[Proportional] RiemannSiegelTheta[Subscript[z, 0]] + 
   (1/4) (-2 Log[Pi] + PolyGamma[1/4 - (I Subscript[z, 0])/2] + 
     PolyGamma[1/4 + (I Subscript[z, 0])/2]) (z - Subscript[z, 0]) 
    (1 + O[z - Subscript[z, 0]]) /; (z -> Subscript[z, 0]) && 
  Subscript[z, 0]^2 != -(1/2 + 2 k)^2 && Element[k, Integers] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["RiemannSiegelTheta", "[", SubscriptBox["z", "0"], "]"]], "+", RowBox[List[FractionBox["1", "4"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]], "2"]]], "]"]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["z", "0"]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List[SubsuperscriptBox["z", "0", "2"], "\[NotEqual]", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", "k"]]]], ")"]], "2"]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <semantics>  <mi> ϑ </mi>  <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", RiemannSiegelTheta] </annotation>  </semantics>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ∝ </mo>  <mrow>  <mrow>  <semantics>  <mi> ϑ </mi>  <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", RiemannSiegelTheta] </annotation>  </semantics>  <mo> ( </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> π </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mi> O </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <msub>  <mi> z </mi>  <mn> 0 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <msubsup>  <mi> z </mi>  <mn> 0 </mn>  <mn> 2 </mn>  </msubsup>  <mo> ≠ </mo>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> k </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> RiemannSiegelTheta </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <ci> RiemannSiegelTheta </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <ln />  <pi />  </apply>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <ci> O </ci>  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <ci> Rule </ci>  <ci> z </ci>  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  </apply>  <apply>  <neq />  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> z </ci>  <cn type='integer'> 0 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> k </ci>  <integers />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", SubscriptBox["zz", "0"], "]"]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "\[Pi]", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]], "2"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List[SubsuperscriptBox["zz", "0", "2"], "\[NotEqual]", RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "k"]]]], ")"]], "2"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |