|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/10.03.06.0017.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RiemannSiegelTheta[z] \[Proportional] -((Pi Sqrt[z^2])/(8 z)) -
(z/2) (1 + Log[Pi]) + (z/4) Log[z^2/4] +
Sum[((-1)^k ((4 k + 3)/(16 (k + 1) (2 k + 1)) -
2 Sum[(2^(4 j) (2 k)! BernoulliB[2 + 2 j])/((2 j + 2)! (2 k - 2 j)!),
{j, 0, k - 1}]) z^(-2 k - 1))/2^(2 k), {k, 0, Infinity}] /;
Abs[Arg[z^2]] < Pi && (Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List["8", " ", "z"]]]]], "-", RowBox[List[FractionBox["z", "2"], RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "\[Pi]", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["z", "4"], RowBox[List["Log", "[", FractionBox[SuperscriptBox["z", "2"], "4"], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "k"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "k"]], "+", "3"]], ")"]]]], RowBox[List["16", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]]]]], "-", RowBox[List["2", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["2", RowBox[List["4", " ", "j"]]], RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", "+", RowBox[List["2", " ", "j"]]]], "]"]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "+", "2"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", RowBox[List["2", "j"]]]], ")"]], "!"]]]]]]]]]]], ")"]], SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "1"]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", SuperscriptBox["z", "2"], "]"]], "]"]], "<", "\[Pi]"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> ϑ </mi> <annotation encoding='Mathematica'> TagBox["\[CurlyTheta]", RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mi> z </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> π </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mi> π </mi> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> RiemannSiegelTheta </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <pi /> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> j </ci> </apply> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <pi /> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List["8", " ", "z"]]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "z", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Log", "[", "\[Pi]", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "z", " ", RowBox[List["Log", "[", FractionBox[SuperscriptBox["z", "2"], "4"], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["4", " ", "k"]], "+", "3"]], RowBox[List["16", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]]], "-", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["4", " ", "j"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", "+", RowBox[List["2", " ", "j"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "2"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", RowBox[List["2", " ", "j"]]]], ")"]], "!"]]]]]]]]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "1"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", SuperscriptBox["z", "2"], "]"]], "]"]], "<", "\[Pi]"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|