Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











RiemannSiegelTheta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > RiemannSiegelTheta[z] > Differentiation > Fractional integro-differentiation





http://functions.wolfram.com/10.03.20.0006.01









  


  










Input Form





D[RiemannSiegelTheta[z], {z, \[Alpha]}] == Sum[(((-1)^k PolyGamma[2 k, 1/4])/(Gamma[2 k - \[Alpha] + 2] 2^(2 k + 1))) z^(2 k + 1 - \[Alpha]), {k, 0, Infinity}] - (Log[Pi] z^(1 - \[Alpha]))/(2 Gamma[2 - \[Alpha]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["RiemannSiegelTheta", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "k"]], ",", FractionBox["1", "4"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", "k"]], "-", "\[Alpha]", "+", "2"]], "]"]], SuperscriptBox["2", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "+", "1", "-", "\[Alpha]"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["Log", "[", "\[Pi]", "]"]], SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]], " "]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <semantics> <mi> &#977; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[CurlyTheta]&quot;, RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> RiemannSiegelTheta </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <pi /> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", " ", "k"]], ",", FractionBox["1", "4"]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1", "-", "\[Alpha]"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]", "+", "2"]], "]"]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["Log", "[", "\[Pi]", "]"]], " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Alpha]"]], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02