|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.01.03.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BesselJ[\[Nu], z] ==
((Sign[\[Nu]] (-1)^((1/2) (Abs[\[Nu]] - 1/3) (Sign[\[Nu]] + 1))
2^(Abs[\[Nu]] - 5/3) Gamma[-(1/3)])/(z^Abs[\[Nu]]
(3^(5/6) Gamma[1 - Abs[\[Nu]]])))
(3^(1/6) z^(2/3) (-3 Sign[\[Nu]] AiryAiPrime[(-(3/2)^(2/3)) z^(2/3)] +
Sqrt[3] AiryBiPrime[(-(3/2)^(2/3)) z^(2/3)])
Sum[((Abs[\[Nu]] - k - 4/3)!/(k! (Abs[\[Nu]] - 2 k - 4/3)!
Pochhammer[4/3, k] Pochhammer[1 - Abs[\[Nu]], k])) (z^2/4)^k,
{k, 0, Abs[\[Nu]] - 4/3}] +
2^(2/3) ((-Sign[\[Nu]]) Sqrt[3] AiryAi[(-(3/2)^(2/3)) z^(2/3)] +
AiryBi[(-(3/2)^(2/3)) z^(2/3)])
Sum[((Abs[\[Nu]] - k - 1/3)!/(k! (Abs[\[Nu]] - 2 k - 1/3)!
Pochhammer[1/3, k] Pochhammer[1 - Abs[\[Nu]], k])) (z^2/4)^k,
{k, 0, Abs[\[Nu]] - 1/3}]) /; Element[Abs[\[Nu]] - 1/3, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["1", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], "+", "1"]], ")"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["5", "3"]]]], " ", SuperscriptBox["z", RowBox[List["-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], RowBox[List[SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["4", "3"]]]], RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["4", "3"]]], ")"]], "!"]], " ", "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["4", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["4", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Sign", "[", "\[Nu]", "]"]]]], " ", SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["1", "3"]]]], RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["1", "3"]]], ")"]], "!"]], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["1", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]]]]]]]], ")"]]]]]], "/;", RowBox[List["Element", "[", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["1", "3"]]], ",", "Integers"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Ai </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["4", "3"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mo> ❘ </mo> <mi> ν </mi> <mo> ❘ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[LeftBracketingBar]", "\[Nu]", "\[RightBracketingBar]"]]]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "3"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mo> ❘ </mo> <mi> ν </mi> <mo> ❘ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[LeftBracketingBar]", "\[Nu]", "\[RightBracketingBar]"]]]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> ν </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BesselJ </ci> <ci> ν </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Sign </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Sign </ci> <ci> ν </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> ν </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Sign </ci> <ci> ν </ci> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 4 <sep /> 3 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> ν </ci> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Sign </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 3 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <abs /> <ci> ν </ci> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <plus /> <apply> <abs /> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["1", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], "+", "1"]], ")"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["5", "3"]]]], " ", SuperscriptBox["z", RowBox[List["-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["4", "3"]]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["4", "3"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["4", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["4", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Sign", "[", "\[Nu]", "]"]]]], " ", SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["1", "3"]]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["1", "3"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["1", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]]]]]]]]], ")"]]]], RowBox[List[SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["1", "3"]]], "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|