  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/03.01.03.0012.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    BesselJ[\[Nu], z] == 
  ((Sign[\[Nu]] (-1)^((1/2) (Abs[\[Nu]] - 2/3) (Sign[\[Nu]] + 1)) 
     2^(Abs[\[Nu]] - 7/3) Gamma[-(2/3)])/(z^Abs[\[Nu]] 
     (3 3^(5/6) Gamma[1 - Abs[\[Nu]]]))) 
   (9 z^(4/3) (Sqrt[3] AiryAi[(-(3/2)^(2/3)) z^(2/3)] + 
      Sign[\[Nu]] AiryBi[(-(3/2)^(2/3)) z^(2/3)]) 
     Sum[((Abs[\[Nu]] - k - 5/3)!/(k! (Abs[\[Nu]] - 2 k - 5/3)! 
         Pochhammer[5/3, k] Pochhammer[1 - Abs[\[Nu]], k])) (z^2/4)^k, 
      {k, 0, Abs[\[Nu]] - 5/3}] - 4 2^(1/3) 3^(1/6) 
     (3 AiryAiPrime[(-(3/2)^(2/3)) z^(2/3)] + Sign[\[Nu]] Sqrt[3] 
       AiryBiPrime[(-(3/2)^(2/3)) z^(2/3)]) 
     Sum[((Abs[\[Nu]] - k - 2/3)!/(k! (Abs[\[Nu]] - 2 k - 2/3)! 
         Pochhammer[2/3, k] Pochhammer[1 - Abs[\[Nu]], k])) (z^2/4)^k, 
      {k, 0, Abs[\[Nu]] - 2/3}]) /; Element[Abs[\[Nu]] - 2/3, Integers] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["2", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], "+", "1"]], ")"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["7", "3"]]]], " ", SuperscriptBox["z", RowBox[List["-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["2", "3"]]], "]"]]]], RowBox[List["3", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["5", "3"]]]], RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["5", "3"]]], ")"]], "!"]], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["5", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]]]]]], "-", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["2", "3"]]]], RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["2", "3"]]], ")"]], "!"]], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["2", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["2", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]], " ", ")"]]]], SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]]]]]]]], ")"]]]]]], "/;", RowBox[List["Element", "[", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["2", "3"]]], ",", "Integers"]], "]"]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mi> J </mi>  <mi> ν </mi>  </msub>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> sgn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ν </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> sgn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ν </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msup>  <mn> 3 </mn>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 6 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 4 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Ai </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mtext>   </mtext>  <mrow>  <mrow>  <mi> sgn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ν </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Bi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 5 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["5", "3"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mo> ❘ </mo>  <mi> ν </mi>  <mo> ❘ </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[LeftBracketingBar]", "\[Nu]", "\[RightBracketingBar]"]]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mroot>  <mn> 2 </mn>  <mn> 3 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mn> 3 </mn>  <mn> 6 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Ai </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mtext>   </mtext>  <mrow>  <mrow>  <mi> sgn </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> ν </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> Bi </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["2", "3"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mo> ❘ </mo>  <mi> ν </mi>  <mo> ❘ </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[LeftBracketingBar]", "\[Nu]", "\[RightBracketingBar]"]]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> ν </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> BesselJ </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Sign </ci>  <ci> ν </ci>  </apply>  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ci> Sign </ci>  <ci> ν </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <abs />  <ci> ν </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 5 <sep /> 6 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <abs />  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 4 <sep /> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> AiryAi </ci>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Sign </ci>  <ci> ν </ci>  </apply>  <apply>  <ci> AiryBi </ci>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 3 </cn>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <factorial />  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> k </ci>  </apply>  <apply>  <factorial />  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 5 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 5 <sep /> 3 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <abs />  <ci> ν </ci>  </apply>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 6 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> AiryAiPrime </ci>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> Sign </ci>  <ci> ν </ci>  </apply>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> AiryBiPrime </ci>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <factorial />  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> k </ci>  </apply>  <apply>  <factorial />  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <abs />  <ci> ν </ci>  </apply>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <apply>  <plus />  <apply>  <abs />  <ci> ν </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <integers />  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["2", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], "+", "1"]], ")"]]]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["7", "3"]]]], " ", SuperscriptBox["z", RowBox[List["-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["2", "3"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["4", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", RowBox[List["AiryBi", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["5", "3"]]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["5", "3"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["5", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["5", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]]]]]]], "-", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["AiryAiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Sign", "[", "\[Nu]", "]"]], " ", SqrtBox["3"], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], RowBox[List["2", "/", "3"]]]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["2", "3"]]]], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", "k", "-", FractionBox["2", "3"]]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["z", "2"], "4"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", RowBox[List["2", " ", "k"]], "-", FractionBox["2", "3"]]], ")"]], "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["2", "3"], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], ",", "k"]], "]"]]]]]]]]]]], ")"]]]], RowBox[List["3", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", RowBox[List["Abs", "[", "\[Nu]", "]"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "\[Nu]", "]"]], "-", FractionBox["2", "3"]]], "\[Element]", "Integers"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |