Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself





http://functions.wolfram.com/03.01.06.0029.01









  


  










Input Form





BesselJ[\[Nu], z] \[Proportional] Exp[2 \[Nu] Pi I Floor[Arg[z - x]/(2 Pi)]] (BesselJ[\[Nu], x] + (-BesselJ[1 + \[Nu], x] + (\[Nu]/x) BesselJ[\[Nu], x]) (z - x) + ((((-1 + \[Nu]) \[Nu] - x^2) BesselJ[\[Nu], x] + BesselJ[1 + \[Nu], x] x)/ (2 x^2)) (z - x)^2 + O[(z - x)^3]) /; Element[x, Reals] && x < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Exp", "[", RowBox[List["2", "\[Nu]", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "x"]], "]"]]]], "+", RowBox[List[FractionBox["\[Nu]", "x"], RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], " ", "-", SuperscriptBox["x", "2"]]], ")"]], RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]]]], "+", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "x"]], "]"]], " ", "x"]]]], RowBox[List["2", " ", SuperscriptBox["x", "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "2"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "3"], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> &#957; </mi> <mi> x </mi> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> <pi /> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> x </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> x </ci> </apply> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> x </ci> </apply> <ci> x </ci> </apply> <apply> <times /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> x </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[Nu]", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "x"]], "]"]]]], "+", FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]]]], "x"]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], "-", SuperscriptBox["x", "2"]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "x"]], "]"]]]], "+", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "x"]], "]"]], " ", "x"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox["x", "2"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", "x"]], "]"]], "3"]]], ")"]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02