Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For small integer powers of the function > For the second power





http://functions.wolfram.com/03.01.06.0052.01









  


  










Input Form





BesselJ[\[Nu], z]^2 == Subscript[F, Infinity][z . \[Nu]] /; Subscript[F, n][z, \[Nu]] == (z^(2 \[Nu])/(2^(2 \[Nu]) Gamma[1 + \[Nu]]^2)) Sum[((-1)^k Pochhammer[1/2 + \[Nu], k] z^(2 k))/(Pochhammer[1 + \[Nu], k] Pochhammer[1 + 2 \[Nu], k] k!), {k, 0, n}] == BesselJ[\[Nu], z]^2 + (((-1)^n z^(2 + 2 n + 2 \[Nu]) Gamma[3/2 + n + \[Nu]])/(Sqrt[Pi] Gamma[2 + n + \[Nu]] Gamma[2 + n + 2 \[Nu]] (n + 1)!)) HypergeometricPFQ[ {1, 3/2 + n + \[Nu]}, {2 + n, 2 + n + \[Nu], 2 + n + 2 \[Nu]}, -z^2] && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"], "\[Equal]", RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", RowBox[List["z", ".", "\[Nu]"]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", RowBox[List["z", ",", "\[Nu]"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]], RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "\[Nu]"]]], SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", "k"]], "]"]], SuperscriptBox["z", RowBox[List["2", " ", "k"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", "\[Nu]"]]]], ",", "k"]], "]"]], RowBox[List["k", "!"]]]]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["z", RowBox[List["2", "+", RowBox[List["2", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n", "+", "\[Nu]"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "n", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "n", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "n", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "n"]], ",", RowBox[List["2", "+", "n", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "n", "+", RowBox[List["2", " ", "\[Nu]"]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]], StyleBox[")", Rule[FontWeight, "Plain"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#10869; </mo> <mrow> <msub> <mi> F </mi> <mi> &#8734; </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> . </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> F </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;+&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <infinity /> </apply> <apply> <scalarproduct /> <ci> z </ci> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> </apply> <ci> z </ci> <ci> &#957; </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", RowBox[List["z", ".", "\[Nu]"]], "]"]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", RowBox[List["z", ",", "\[Nu]"]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["2", " ", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]"]], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], "2"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "2"], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["z", RowBox[List["2", "+", RowBox[List["2", " ", "n"]], "+", RowBox[List["2", " ", "\[Nu]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "n", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "n"]], ",", RowBox[List["2", "+", "n", "+", "\[Nu]"]], ",", RowBox[List["2", "+", "n", "+", RowBox[List["2", " ", "\[Nu]"]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "n", "+", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "n", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02