html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 BesselJ

 http://functions.wolfram.com/03.01.06.0012.01

 Input Form

 BesselJ[\[Nu], z] \[Proportional] (1/Sqrt[2 Pi]) ((1/Sqrt[z]) (1 - (I Sqrt[-z^2])/z) Cos[z - (Pi (2 \[Nu] + 1))/4] + (E^(I Pi \[Nu])/Sqrt[-z]) (1 + (I Sqrt[-z^2])/z) Cos[z + (Pi (2 \[Nu] + 1))/4]) HypergeometricPFQ[{(1 - 2 \[Nu])/4, (3 - 2 \[Nu])/4, (1 + 2 \[Nu])/4, (3 + 2 \[Nu])/4}, {1/2}, -(1/z^2)] + ((1 - 4 \[Nu]^2)/(8 z Sqrt[2 Pi])) ((1/Sqrt[z]) (1 - (I Sqrt[-z^2])/z) Sin[z - (Pi (2 \[Nu] + 1))/4] + (E^(I Pi \[Nu])/Sqrt[-z]) (1 + (I Sqrt[-z^2])/z) Sin[z + (Pi (2 \[Nu] + 1))/4]) HypergeometricPFQ[ {(3 - 2 \[Nu])/4, (5 - 2 \[Nu])/4, (3 + 2 \[Nu])/4, (5 + 2 \[Nu])/4}, {3/2}, -(1/z^2)] /; (Abs[z] -> Infinity)

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " "]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[" ", SqrtBox["z"]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], RowBox[List["Cos", "[", RowBox[List["z", "-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], "4"]]], "]"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], SqrtBox[RowBox[List["-", "z"]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], RowBox[List["Cos", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], "4"]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["1", "+", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "4"]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], RowBox[List["8", " ", "z", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " "]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[" ", SqrtBox["z"]]]], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], RowBox[List["Sin", "[", RowBox[List["z", "-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], "4"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " "]], SqrtBox[RowBox[List["-", "z"]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]], "4"]]], "]"]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["3", "+", RowBox[List["2", "\[Nu]"]]]], "4"], ",", FractionBox[RowBox[List["5", "+", RowBox[List["2", "\[Nu]"]]]], "4"]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]

 MathML Form

 J ν ( z ) 1 2 π ( 1 - z ( 1 + - z 2 z ) π ν cos ( z + π ( 2 ν + 1 ) 4 ) + 1 z ( 1 - - z 2 z ) cos ( z - π ( 2 ν + 1 ) 4 ) ) 4 F 1 ( 1 - 2 ν 4 , 3 - 2 ν 4 , 2 ν + 1 4 , 2 ν + 3 4 ; 1 2 ; - 1 z 2 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Nu]"]]]], "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "1"]], "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "3"]], "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] + 1 - 4 ν 2 8 z 2 π ( 1 - z ( 1 + - z 2 z ) π ν sin ( z + π ( 2 ν + 1 ) 4 ) + 1 z ( 1 - - z 2 z ) sin ( z - π ( 2 ν + 1 ) 4 ) ) 4 F 1 ( 3 - 2 ν 4 , 5 - 2 ν 4 , 2 ν + 3 4 , 2 ν + 5 4 ; 3 2 ; - 1 z 2 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["3", "-", RowBox[List["2", "\[Nu]"]]]], "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["5", "-", RowBox[List["2", "\[Nu]"]]]], "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "3"]], "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["2", "\[Nu]"]], "+", "5"]], "4"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] /; ( "\[LeftBracketingBar]" z "\[RightBracketingBar]" "\[Rule]" ) Condition Proportional BesselJ ν z 1 2 1 2 -1 1 -1 z 1 2 -1 1 -1 z 2 1 2 z -1 ν z 2 ν 1 4 -1 1 z 1 2 -1 1 -1 -1 z 2 1 2 z -1 z -1 2 ν 1 4 -1 HypergeometricPFQ 1 -1 2 ν 4 -1 3 -1 2 ν 4 -1 2 ν 1 4 -1 2 ν 3 4 -1 1 2 -1 1 z 2 -1 1 -1 4 ν 2 8 z 2 1 2 -1 1 -1 z 1 2 -1 1 -1 z 2 1 2 z -1 ν z 2 ν 1 4 -1 1 z 1 2 -1 1 -1 -1 z 2 1 2 z -1 z -1 2 ν 1 4 -1 HypergeometricPFQ 3 -1 2 ν 4 -1 5 -1 2 ν 4 -1 2 ν 3 4 -1 2 ν 5 4 -1 3 2 -1 1 z 2 -1 Rule z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["z", "-", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]]]], "]"]]]], SqrtBox["z"]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["z", "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]]]], "]"]]]], SqrtBox[RowBox[List["-", "z"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", SuperscriptBox["\[Nu]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["z", "-", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]]]], "]"]]]], SqrtBox["z"]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], "z"]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["z", "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "+", "1"]], ")"]]]]]], "]"]]]], SqrtBox[RowBox[List["-", "z"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], RowBox[List["8", " ", "z", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29