Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Identities > Recurrence identities > Distant neighbors > Increasing





http://functions.wolfram.com/03.01.17.0015.01









  


  










Input Form





BesselJ[\[Nu], z] == (2^(-1 + n) Pochhammer[1 + \[Nu], -1 + n] ((-z) HypergeometricPFQ[{1, (1 - n)/2, 1 - n/2}, {1, 1 - n, 1 - n - \[Nu], 1 + \[Nu]}, -z^2] BesselJ[1 + n + \[Nu], z] + 2 (n + \[Nu]) HypergeometricPFQ[{1, (1 - n)/2, -(n/2)}, {1, -n, -n - \[Nu], 1 + \[Nu]}, -z^2] BesselJ[n + \[Nu], z]))/z^n /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "z"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["1", "-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "n"]], ",", RowBox[List["1", "-", "n", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["-", "n"]], "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["n", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]], " ", ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;4&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;n&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;-&quot;, &quot;\[Nu]&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;3&quot;], SubscriptBox[&quot;F&quot;, &quot;4&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;n&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;n&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;-&quot;, &quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> n </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> n </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "1"]], "+", "n"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "z"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["1", "-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "n"]], ",", RowBox[List["1", "-", "n", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", "n", "+", "\[Nu]"]], ",", "z"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "+", "\[Nu]"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["1", "-", "n"]], "2"], ",", RowBox[List["-", FractionBox["n", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["-", "n"]], "-", "\[Nu]"]], ",", RowBox[List["1", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["n", "+", "\[Nu]"]], ",", "z"]], "]"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02