Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function and a power function > Involving exp and power > Linear arguments





http://functions.wolfram.com/03.01.21.0021.01









  


  










Input Form





Integrate[BesselJ[\[Nu], a z]/(z^\[Nu] E^(I a z)), z] == (1/(a (-1 + 2 \[Nu]) Gamma[\[Nu]])) ((I (-2 E^(I a z) (a z)^\[Nu] + 2^\[Nu] a z BesselJ[-1 + \[Nu], a z] Gamma[\[Nu]] + I 2^\[Nu] a z BesselJ[\[Nu], a z] Gamma[\[Nu]]))/ (2^\[Nu] E^(I a z) z^\[Nu]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]]], RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], "\[Nu]"]]], "+", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", "a", " ", "z", " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", "\[Nu]"], " ", "a", " ", "z", " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <ci> a </ci> <ci> z </ci> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <ci> a </ci> <imaginaryi /> <ci> z </ci> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["-", "\[Nu]_"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a_", " ", "z_"]]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["a_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], "\[Nu]"]]], "+", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", "a", " ", "z", " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ",", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", "\[Nu]"], " ", "a", " ", "z", " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]]], ")"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29