Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/03.01.21.0079.01









  


  










Input Form





Integrate[t^(\[Alpha] - 1) BesselJ[\[Nu], t]^2, {t, 0, Infinity}] == -((Gamma[1/2 - \[Alpha]/2] Gamma[\[Alpha]/2 + \[Nu]])/ (Sqrt[Pi] \[Alpha] Gamma[-(\[Alpha]/2)] Gamma[-(\[Alpha]/2) + \[Nu] + 1])) /; Re[\[Alpha] + 2 \[Nu]] > 0 && Re[\[Alpha]] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", "t"]], "]"]], "2"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[Alpha]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["\[Alpha]", "2"], "+", "\[Nu]"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", "\[Alpha]", " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Alpha]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["\[Alpha]", "2"]]], "+", "\[Nu]", "+", "1"]], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <msup> <mi> t </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> &#945; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> &#945; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <ci> t </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> &#945; </ci> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> &#945; </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <real /> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", "t_"]], "]"]], "2"]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[Alpha]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["\[Alpha]", "2"], "+", "\[Nu]"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", "\[Alpha]", " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Alpha]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", FractionBox["\[Alpha]", "2"]]], "+", "\[Nu]", "+", "1"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["\[Alpha]", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29