|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/03.01.22.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LaplaceTransform[t^\[Mu] Subscript[j, n][t], t, z] ==
(1/Gamma[3/2 + n]) (2^(-1 - n) Sqrt[Pi] z^(-1 - n - \[Mu])
Gamma[1 + n + \[Mu]] Hypergeometric2F1[(1/2) (1 + n + \[Mu]),
(1/2) (2 + n + \[Mu]), 3/2 + n, -(1/z^2)]) /;
Element[n, Integers] && n >= 0 && Subscript[j, n][z] ==
Sqrt[Pi/(2 z)] BesselJ[n + 1/2, z] && Re[\[Mu]] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LaplaceTransform", "[", RowBox[List[RowBox[List[SuperscriptBox["t", "\[Mu]"], " ", RowBox[List[SubscriptBox["j", "n"], "[", "t", "]"]]]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]]], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "n", "-", "\[Mu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "n", "+", "\[Mu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "n", "+", "\[Mu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "n", "+", "\[Mu]"]], ")"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["j", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["\[Pi]", RowBox[List["2", " ", "z"]]]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", "\[Mu]", "]"]], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> ℒ </mi> <mi> t </mi> </msub> <mo> [ </mo> <mrow> <msup> <mi> t </mi> <mi> μ </mi> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> j </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "+", "\[Mu]", "+", "1"]], ")"]]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "+", "\[Mu]", "+", "2"]], ")"]]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["n", "+", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msub> <mi> j </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msqrt> <mfrac> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> μ </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LaplaceTransform </ci> <apply> <times /> <apply> <power /> <ci> t </ci> <ci> μ </ci> </apply> <apply> <ci> SphericalBesselJ </ci> <ci> n </ci> <ci> t </ci> </apply> </apply> <ci> t </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> <apply> <eq /> <apply> <ci> SphericalBesselJ </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> μ </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaplaceTransform", "[", RowBox[List[RowBox[List[SuperscriptBox["t_", "\[Mu]_"], " ", RowBox[List[SubscriptBox["j", "n"], "[", "t_", "]"]]]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "n", "-", "\[Mu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "n", "+", "\[Mu]"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "n", "+", "\[Mu]"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "n", "+", "\[Mu]"]], ")"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List[SubscriptBox["j", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["\[Pi]", RowBox[List["2", " ", "z"]]]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", "z"]], "]"]]]]]], "&&", RowBox[List[RowBox[List["Re", "[", "\[Mu]", "]"]], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|