Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











BesselJ






Mathematica Notation

Traditional Notation









Bessel-Type Functions > BesselJ[nu,z] > Representations through more general functions > Through Meijer G > Classical cases involving 0F~1





http://functions.wolfram.com/03.01.26.0141.01









  


  










Input Form





BesselJ[\[Nu], 2 Sqrt[z]] Hypergeometric0F1Regularized[\[Nu], -z] == (2^(\[Nu] - 1)/Sqrt[Pi]) MeijerG[{{(1 - \[Nu])/2}, {}}, {{\[Nu]/2}, {-(\[Nu]/2), 1 - (3 \[Nu])/2}}, 4 z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["2", SqrtBox["z"]]]]], "]"]], RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "z"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List["\[Nu]", "-", "1"]]], SqrtBox["\[Pi]"]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["\[Nu]", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["3", "\[Nu]"]], "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["4", "z"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> J </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> &#957; </mi> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;\[Nu]&quot;, Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], Hypergeometric0F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;4&quot;, &quot; &quot;, &quot;z&quot;]], MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]]], List[RowBox[List[TagBox[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;\[Nu]&quot;]], &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <ci> BesselJ </ci> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list /> </list> <list> <list> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["2", " ", SqrtBox["z_"]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List["\[Nu]_", ",", RowBox[List["-", "z_"]]]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["\[Nu]", "-", "1"]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["\[Nu]", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["3", " ", "\[Nu]"]], "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", "z"]]]], "]"]]]], SqrtBox["\[Pi]"]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02