|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.21.04.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Singularities[Tanh[z], z] == {SequenceList[{(Pi I)/2 + Pi k I, 1},
Element[k, Integers]], {ComplexInfinity, Infinity}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["Tanh", "[", "z", "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], "+", RowBox[List["\[Pi]", " ", "k", " ", "\[ImaginaryI]"]]]], ",", "1"]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> 𝒮𝒾𝓃ℊ </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> } </mo> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> ∈ </mo> <mi> ℤ </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒮𝒾𝓃ℊ </ci> <ci> z </ci> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> <list> <list> <apply> <ci> Condition </ci> <list> <apply> <plus /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <pi /> <ci> k </ci> <imaginaryi /> </apply> </apply> <cn type='integer'> 1 </cn> </list> <apply> <in /> <ci> k </ci> <ci> ℤ </ci> </apply> </apply> </list> <list> <apply> <ci> OverTilde </ci> <infinity /> </apply> <infinity /> </list> </list> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["Tanh", "[", "z_", "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["{", RowBox[List[RowBox[List["SequenceList", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"], "+", RowBox[List["\[Pi]", " ", "k", " ", "\[ImaginaryI]"]]]], ",", "1"]], "}"]], ",", RowBox[List["k", "\[Element]", "Integers"]]]], "]"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "}"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|