| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.21.13.0002.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Derivative[1][w][z] - a w[z]^2 - b w[z] - c == 0 /; 
 w[z] == (-(1/(2 a))) (b + Sqrt[b^2 - 4 a c] 
     Tanh[(a Sqrt[b^2 - 4 a c] z + Sqrt[b^2 - 4 a c] Subscript[c, 1])/(2 a)]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "-", RowBox[List["a", " ", SuperscriptBox[RowBox[List["w", "[", "z", "]"]], "2"]]], "-", RowBox[List["b", " ", RowBox[List["w", "[", "z", "]"]]]], "-", "c"]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", "a"]]]]], RowBox[List["(", RowBox[List["b", "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", "z"]], "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", SubscriptBox["c", "1"]]]]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msup>  <mi> w </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> c </mi>  </mrow>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> w </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msub>  <mi> c </mi>  <mn> 1 </mn>  </msub>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <plus />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <apply>  <power />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <eq />  <apply>  <ci> w </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tanh />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> c </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "-", RowBox[List["a_", " ", SuperscriptBox[RowBox[List["w", "[", "z_", "]"]], "2"]]], "-", RowBox[List["b_", " ", RowBox[List["w", "[", "z_", "]"]]]], "-", "c_"]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["b", "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", "z"]], "+", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], " ", SubscriptBox["c", "1"]]]]], RowBox[List["2", " ", "a"]]], "]"]]]]]], RowBox[List["2", " ", "a"]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |