|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.21.13.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[2][w][z] + 2 w[z] Derivative[1][w][z] == 0 /;
w[z] == Subscript[c, 1] Tanh[Sqrt[Subscript[c, 1]] z +
Sqrt[Subscript[c, 1]] Subscript[c, 2]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "+", RowBox[List["2", " ", RowBox[List["w", "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[SubscriptBox["c", "1"], RowBox[List["Tanh", "[", RowBox[List[RowBox[List[SqrtBox[SubscriptBox["c", "1"]], "z"]], "+", RowBox[List[SqrtBox[SubscriptBox["c", "1"]], SubscriptBox["c", "2"]]]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <msub> <mi> c </mi> <mn> 1 </mn> </msub> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <msub> <mi> c </mi> <mn> 1 </mn> </msub> </msqrt> <mo> ⁢ </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <tanh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", RowBox[List["2", " ", RowBox[List["w", "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["Tanh", "[", RowBox[List[RowBox[List[SqrtBox[SubscriptBox["c", "1"]], " ", "z"]], "+", RowBox[List[SqrtBox[SubscriptBox["c", "1"]], " ", SubscriptBox["c", "2"]]]]], "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|