| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.21.20.0005.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | D[Tanh[z], {z, \[Alpha]}] == 
  Sum[(2^(2 k - 1) (2^(2 k) - 1) BernoulliB[2 k] z^(2 k - \[Alpha] - 1))/
    (Gamma[2 k - \[Alpha]] k), {k, 1, Infinity}] /; Abs[z] < Pi/2 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["Tanh", "[", "z", "]"]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "k"]]], "-", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]", "-", "1"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]"]], "]"]], " ", "k"]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", FractionBox["\[Pi]", "2"]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mo> ∂ </mo>  <mi> α </mi>  </msup>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mo> ∂ </mo>  <msup>  <mi> z </mi>  <mi> α </mi>  </msup>  </mrow>  </mfrac>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mrow>  <mtext>   </mtext>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <semantics>  <mi> B </mi>  <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation>  </semantics>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> α </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> α </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> < </mo>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <partialdiff />  <bvar>  <ci> z </ci>  <degree>  <ci> α </ci>  </degree>  </bvar>  <apply>  <tanh />  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <ci> BernoulliB </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> α </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> α </ci>  </apply>  </apply>  </apply>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <lt />  <apply>  <abs />  <ci> z </ci>  </apply>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["Tanh", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "k"]]], "-", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]", "-", "1"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]"]], "]"]], " ", "k"]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", FractionBox["\[Pi]", "2"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |