| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.21.21.0137.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[((A + B Cosh[z]) Tanh[z])/(a + b Sinh[z]), z] == 
 (-(1/(b (-a^2 - b^2)^(3/2)))) (2 A b^2 Sqrt[-a^2 - b^2] ArcTan[Tanh[z/2]] - 
   2 a (a^2 + b^2) B ArcTan[(b - a Tanh[z/2])/Sqrt[-a^2 - b^2]] + 
   Sqrt[-a^2 - b^2] ((a^2 + b^2) B z + a A b Log[Cosh[z]] - 
     a A b Log[a + b Sinh[z]])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Cosh", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["Tanh", "[", "z", "]"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", "z", "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "A", " ", SuperscriptBox["b", "2"], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]], "]"]]]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "B", " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "B", " ", "z"]], "+", RowBox[List["a", " ", "A", " ", "b", " ", RowBox[List["Log", "[", RowBox[List["Cosh", "[", "z", "]"]], "]"]]]], "-", RowBox[List["a", " ", "A", " ", "b", " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> A </mi>  <mo> + </mo>  <mrow>  <mi> B </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> A </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> B </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> b </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> B </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> A </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> A </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <plus />  <ci> A </ci>  <apply>  <times />  <ci> B </ci>  <apply>  <cosh />  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <tanh />  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> A </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <arctan />  <apply>  <tanh />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> B </ci>  <apply>  <arctan />  <apply>  <times />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <apply>  <tanh />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> B </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> A </ci>  <ci> b </ci>  <apply>  <ln />  <apply>  <cosh />  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> A </ci>  <ci> b </ci>  <apply>  <ln />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <sinh />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["A_", "+", RowBox[List["B_", " ", RowBox[List["Cosh", "[", "z_", "]"]]]]]], ")"]], " ", RowBox[List["Tanh", "[", "z_", "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", "z_", "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["2", " ", "A", " ", SuperscriptBox["b", "2"], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]], "]"]]]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "B", " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "B", " ", "z"]], "+", RowBox[List["a", " ", "A", " ", "b", " ", RowBox[List["Log", "[", RowBox[List["Cosh", "[", "z", "]"]], "]"]]]], "-", RowBox[List["a", " ", "A", " ", "b", " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]]]], ")"]]]]]], RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |