Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic, exponential and a power functions > Involving sinh, exp and power > Involving zn ep z sinh(a+b z) tanh( c z)





http://functions.wolfram.com/01.21.21.0172.01









  


  










Input Form





Integrate[z^n E^(p z) Sinh[b z] Tanh[c z], z] == (1/2) n! (E^((-b + p) z) Sum[(1/(-j + n)!) ((-1)^j (-b + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, 1 + j], 1}, {1 + Subscript[a, 1], \[Ellipsis], 1 + Subscript[a, 1 + j]}, -E^(2 c z)]), {j, 0, n}] - E^((-b + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (-b + 2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[b, 1], \[Ellipsis], Subscript[b, 1 + j], 1}, {1 + Subscript[b, 1], \[Ellipsis], 1 + Subscript[b, 1 + j]}, -E^(2 c z)]), {j, 0, n}] - E^((b + p) z) Sum[(1/(-j + n)!) ((-1)^j (b + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[c, 1], \[Ellipsis], Subscript[c, 1 + j], 1}, {1 + Subscript[c, 1], \[Ellipsis], 1 + Subscript[c, 1 + j]}, -E^(2 c z)]), {j, 0, n}] + E^((b + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (b + 2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[d, 1], \[Ellipsis], Subscript[d, 1 + j], 1}, {1 + Subscript[d, 1], \[Ellipsis], 1 + Subscript[d, 1 + j]}, -E^(2 c z)]), {j, 0, n}]) /; Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, n + 1] == (-b + p)/(2 c) && Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == Subscript[b, n + 1] == (-b + 2 c + p)/(2 c) && Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, n + 1] == (b + p)/(2 c) && Subscript[d, 1] == Subscript[d, 2] == \[Ellipsis] == Subscript[d, n + 1] == (b + 2 c + p)/(2 c) && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["d", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["d", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["d", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["d", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", SubscriptBox["d", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["d", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], HypergeometricPFQ]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], HypergeometricPFQ]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;b&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;b&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;b&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;b&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, &quot;p&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], HypergeometricPFQ]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;b&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;b&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;b&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;b&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], HypergeometricPFQ]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18