html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Tanh

 http://functions.wolfram.com/01.21.21.0200.01

 Input Form

 Integrate[z^n E^(p z) Sin[a z] Sinh[b z] Tanh[c z], z] == (1/4) I n! ((-E^(((-I) a + b + p) z)) Sum[(1/(-j + n)!) ((-1)^j ((-I) a + b + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[e, 1], \[Ellipsis], Subscript[e, 1 + j], 1}, {1 + Subscript[e, 1], \[Ellipsis], 1 + Subscript[e, 1 + j]}, -E^(2 c z)]), {j, 0, n}] + E^(((-I) a + b + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j ((-I) a + b + 2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[f, 1], \[Ellipsis], Subscript[f, 1 + j], 1}, {1 + Subscript[f, 1], \[Ellipsis], 1 + Subscript[f, 1 + j]}, -E^(2 c z)]), {j, 0, n}] - E^((I a + b + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a + b + 2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[g, 1], \[Ellipsis], Subscript[g, 1 + j], 1}, {1 + Subscript[g, 1], \[Ellipsis], 1 + Subscript[g, 1 + j]}, -E^(2 c z)]), {j, 0, n}] + E^((I a + b + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a + b + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[h, 1], \[Ellipsis], Subscript[h, 1 + j], 1}, {1 + Subscript[h, 1], \[Ellipsis], 1 + Subscript[h, 1 + j]}, -E^(2 c z)]), {j, 0, n}] + E^(((-I) a - b + p) z) Sum[(1/(-j + n)!) ((-1)^j ((-I) a - b + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[i, 1], \[Ellipsis], Subscript[i, 1 + j], 1}, {1 + Subscript[i, 1], \[Ellipsis], 1 + Subscript[i, 1 + j]}, -E^(2 c z)]), {j, 0, n}] - E^(((-I) a - b + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j ((-I) a - b + 2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[k, 1], \[Ellipsis], Subscript[k, 1 + j], 1}, {1 + Subscript[k, 1], \[Ellipsis], 1 + Subscript[k, 1 + j]}, -E^(2 c z)]), {j, 0, n}] - E^((I a - b + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a - b + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[l, 1], \[Ellipsis], Subscript[l, 1 + j], 1}, {1 + Subscript[l, 1], \[Ellipsis], 1 + Subscript[l, 1 + j]}, -E^(2 c z)]), {j, 0, n}] + E^((I a - b + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a - b + 2 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[m, 1], \[Ellipsis], Subscript[m, 1 + j], 1}, {1 + Subscript[m, 1], \[Ellipsis], 1 + Subscript[m, 1 + j]}, -E^(2 c z)]), {j, 0, n}]) /; Subscript[e, 1] == Subscript[e, 2] == \[Ellipsis] == Subscript[e, n + 1] == ((-I) a + b + p)/(2 c) && Subscript[f, 1] == Subscript[f, 2] == \[Ellipsis] == Subscript[f, n + 1] == ((-I) a + b + p + 2 c)/(2 c) && Subscript[g, 1] == Subscript[g, 2] == \[Ellipsis] == Subscript[g, n + 1] == (I a + b + p + 2 c)/(2 c) && Subscript[h, 1] == Subscript[h, 2] == \[Ellipsis] == Subscript[h, n + 1] == (I a + b + p)/(2 c) && Subscript[i, 1] == Subscript[i, 2] == \[Ellipsis] == Subscript[i, n + 1] == ((-I) a - b + p)/(2 c) && Subscript[k, 1] == Subscript[k, 2] == \[Ellipsis] == Subscript[k, n + 1] == ((-I) a - b + p + 2 c)/(2 c) && Subscript[l, 1] == Subscript[l, 2] == \[Ellipsis] == Subscript[l, n + 1] == (I a - b + p)/(2 c) && Subscript[m, 1] == Subscript[m, 2] == \[Ellipsis] == Subscript[m, n + 1] == (I a - b + p + 2 c)/(2 c) && Element[n, Integers] && n >= 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["e", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["e", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["e", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["f", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["f", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["f", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["f", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["g", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["g", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["g", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["h", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["h", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["h", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["h", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["i", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["i", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["i", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["i", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["k", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["k", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["k", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["k", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["l", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["l", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["l", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["l", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["m", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["m", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["m", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["m", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["e", "1"], "\[Equal]", SubscriptBox["e", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["e", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["f", "1"], "\[Equal]", SubscriptBox["f", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["f", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p", "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["g", "1"], "\[Equal]", SubscriptBox["g", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["g", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p", "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["h", "1"], "\[Equal]", SubscriptBox["h", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["h", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["i", "1"], "\[Equal]", SubscriptBox["i", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["i", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["k", "1"], "\[Equal]", SubscriptBox["k", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["k", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p", "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["l", "1"], "\[Equal]", SubscriptBox["l", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["l", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["m", "1"], "\[Equal]", SubscriptBox["m", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["m", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p", "+", RowBox[List["2", " ", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]

 MathML Form

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sin", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18