|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.21.21.0257.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/Sqrt[a + b Sqrt[Tanh[c z]]], z] ==
(1/((a^4 - b^4) c)) (Sqrt[a - b] (a^3 + a^2 b + a b^2 + b^3)
ArcTanh[Sqrt[a + b Sqrt[Tanh[c z]]]/Sqrt[a - b]] -
(a - b) (Sqrt[a - I b] (a^2 + (1 + I) a b + I b^2)
ArcTanh[Sqrt[a + b Sqrt[Tanh[c z]]]/Sqrt[a - I b]] +
(a - I b) (Sqrt[a + I b] (a + b) ArcTanh[Sqrt[a + b Sqrt[Tanh[c z]]]/
Sqrt[a + I b]] - (a + I b) Sqrt[a + b]
ArcTanh[Sqrt[a + b Sqrt[Tanh[c z]]]/Sqrt[a + b]])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", SuperscriptBox["b", "4"]]], ")"]], " ", "c"]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["a", " ", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["b", "3"]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "-", "b"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "a", " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "+", "b"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <ci> a </ci> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["a", " ", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["b", "3"]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "-", "b"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", "a", " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], SqrtBox[RowBox[List["a", "+", "b"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", SuperscriptBox["b", "4"]]], ")"]], " ", "c"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|