Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving rational functions of the direct function and hyperbolic functions > Involving rational functions of cosh > Involving (a cosh(c z)+b tanh(c z))-n





http://functions.wolfram.com/01.21.21.0354.01









  


  










Input Form





Integrate[1/(a Cosh[c z] + b Tanh[c z])^2, z] == (Sech[c z]^2 (a + a Cosh[2 c z] + 2 b Sinh[c z]) ((2 Cosh[c z] (b + 2 a Sinh[c z]))/(4 a^2 - b^2) + (Sqrt[2] (-4 a^2 + b (-b + Sqrt[-4 a^2 + b^2])) ArcTan[(2 a + (-b + Sqrt[-4 a^2 + b^2]) Tanh[(c z)/2])/ (Sqrt[2] Sqrt[b] Sqrt[-b + Sqrt[-4 a^2 + b^2]])] (a + a Cosh[2 c z] + 2 b Sinh[c z]))/(Sqrt[b] (-4 a^2 + b^2)^(3/2) Sqrt[-b + Sqrt[-4 a^2 + b^2]]) + (Sqrt[2] (4 a^2 + b (b + Sqrt[-4 a^2 + b^2])) ArcTan[(2 a - (b + Sqrt[-4 a^2 + b^2]) Tanh[(c z)/2])/ (Sqrt[2] Sqrt[(-b) (b + Sqrt[-4 a^2 + b^2])])] (a + a Cosh[2 c z] + 2 b Sinh[c z]))/((-4 a^2 + b^2)^(3/2) Sqrt[(-b) (b + Sqrt[-4 a^2 + b^2])])))/ (4 c (a Cosh[c z] + b Tanh[c z])^2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox["b"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> a </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> a </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> a </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], "+", RowBox[List["b_", " ", RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], "+", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[SqrtBox["b"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]]]]]], "+", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]]], ")"]]]]]]]]]], ")"]]]], RowBox[List["4", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18