Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving cosh > Involving cosh(c z)(a+b tanh(c z))beta





http://functions.wolfram.com/01.21.21.0361.01









  


  










Input Form





Integrate[Cosh[c z] Sqrt[a + b Tanh[c z]], z] == (1/(2 c)) (Sech[c z] ((2 b)/Sqrt[a + b Tanh[c z]] + Sinh[2 c z] Sqrt[a + b Tanh[c z]] + (2 I a^2 Cosh[c z] (EllipticE[I ArcSinh[Sqrt[-a - b]/Sqrt[a + b Tanh[c z]]], (a - b)/(a + b)] - EllipticF[ I ArcSinh[Sqrt[-a - b]/Sqrt[a + b Tanh[c z]]], (a - b)/(a + b)]) (a Cosh[c z] + b Sinh[c z]) Sqrt[(b (1 + Tanh[c z]))/(a + b Tanh[c z])] Sqrt[1 - (a + b)/(a + b Tanh[c z])])/(Sqrt[-a - b] (a - b) b) + (1/(Sqrt[-a - b] b)) (2 I a Cosh[c z] EllipticF[I ArcSinh[Sqrt[-a - b]/Sqrt[a + b Tanh[c z]]], (a - b)/(a + b)] (a Cosh[c z] + b Sinh[c z]) Sqrt[(b (1 + Tanh[c z]))/(a + b Tanh[c z])] Sqrt[1 - (a + b)/(a + b Tanh[c z])]) - (2 I b Cosh[c z] (EllipticE[I ArcSinh[Sqrt[-a - b]/ Sqrt[a + b Tanh[c z]]], -1 + (2 a)/(a + b)] - EllipticF[I ArcSinh[Sqrt[-a - b]/Sqrt[a + b Tanh[c z]]], -1 + (2 a)/(a + b)]) (a Cosh[c z] + b Sinh[c z]) Sqrt[(b (1 + Tanh[c z]))/(a + b Tanh[c z])] Sqrt[1 - (a + b)/(a + b Tanh[c z])])/(Sqrt[-a - b] (a - b))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "c"]]], RowBox[List["(", RowBox[List[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", "b"]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "+", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "b"]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], " ", "b"]]], RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[RowBox[List["2", " ", "a"]], RowBox[List["a", "+", "b"]]]]]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[RowBox[List["2", " ", "a"]], RowBox[List["a", "+", "b"]]]]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", "b"]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "+", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "b"]]], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], " ", "b"]]], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[RowBox[List["2", " ", "a"]], RowBox[List["a", "+", "b"]]]]]]], "]"]], "-", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], "]"]]]], ",", RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[RowBox[List["2", " ", "a"]], RowBox[List["a", "+", "b"]]]]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", "b"]]], " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18