|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.21.21.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Tanh[t]/(E^t t), {t, 0, Infinity}] ==
2 Log[Gamma[1/4]] - Log[4] - 2 Log[Gamma[3/4]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", RowBox[List["Tanh", "[", "t", "]"]]]], "t"], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["Gamma", "[", FractionBox["1", "4"], "]"]], "]"]]]], "-", RowBox[List["Log", "[", "4", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mi> t </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <tanh /> <ci> t </ci> </apply> <apply> <power /> <ci> t </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <ci> Gamma </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t_"]]], " ", RowBox[List["Tanh", "[", "t_", "]"]]]], "t_"], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["Gamma", "[", FractionBox["1", "4"], "]"]], "]"]]]], "-", RowBox[List["Log", "[", "4", "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|