|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.07.13.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 q D[EllipticThetaPrime[3, z, q], q] + D[EllipticThetaPrime[3, z, q],
{z, 2}] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["4", "q", " ", RowBox[List[SubscriptBox["\[PartialD]", "q"], RowBox[List["EllipticThetaPrime", "[", RowBox[List["3", ",", "z", ",", "q"]], "]"]]]]]], "+", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["EllipticThetaPrime", "[", RowBox[List["3", ",", "z", ",", "q"]], "]"]]]]]], "\[Equal]", "0"]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> q </mi> <mo> ⁢ </mo> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <msubsup> <mi> ϑ </mi> <mn> 3 </mn> <mo> ′ </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> q </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <mrow> <msubsup> <mi> ϑ </mi> <mn> 3 </mn> <mo> ′ </mo> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> q </ci> <apply> <partialdiff /> <bvar> <ci> q </ci> </bvar> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> ϑ </ci> <cn type='integer'> 3 </cn> </apply> </apply> <ci> z </ci> <ci> q </ci> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> ϑ </ci> <cn type='integer'> 3 </cn> </apply> </apply> <ci> z </ci> <ci> q </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["4", " ", "q_", " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["q_"]]], RowBox[List["EllipticThetaPrime", "[", RowBox[List["3", ",", "z_", ",", "q_"]], "]"]]]]]], "+", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["EllipticThetaPrime", "[", RowBox[List["3", ",", "z_", ",", "q_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", "0"]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|