Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiND






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiND[z,m] > Series representations > Generalized power series > Expansions at m==0





http://functions.wolfram.com/09.44.06.0005.01









  


  










Input Form





InverseJacobiND[z, m] == I EllipticK[1 - m] + (Sqrt[1 - z^2]/Sqrt[z^2 - 1]) Sum[((-1)^k m^k z^(1 + 2 j + 2 k) Pochhammer[1/2, k] (j + k)!)/ ((1 + 2 j + 2 k) j! k!^2), {j, 0, Infinity}, {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]], "+", RowBox[List[FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["m", "k"], " ", SuperscriptBox["z", RowBox[List["1", "+", RowBox[List["2", " ", "j"]], "+", RowBox[List["2", " ", "k"]]]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]], "!"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "j"]], "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["j", "!"]], " ", SuperscriptBox[RowBox[List["k", "!"]], "2"]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> nd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> m </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> InverseJacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiND", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["m", "k"], " ", SuperscriptBox["z", RowBox[List["1", "+", RowBox[List["2", " ", "j"]], "+", RowBox[List["2", " ", "k"]]]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]], "!"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "j"]], "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["j", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"]]]]]]]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29