|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.44.20.0012.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[InverseJacobiND[z, m], {m, 3}] == (1/(8 (-1 + m)^3 m^3))
((-8 - 23 (-1 + m) m) EllipticE[JacobiAmplitude[InverseJacobiND[z, m], m],
m] - (-1 + m) (-7 + 11 m) EllipticF[JacobiAmplitude[
InverseJacobiND[z, m], m], m] + (1/(z (1 + (-1 + m) z^2)^2))
(-15 (-1 + m)^3 z (1 + (-1 + m) z^2)^2 InverseJacobiND[z, m] +
(m^4 z^4 (45 - 11 Sqrt[1/z^2] z) - (-15 + 7 Sqrt[1/z^2] z)
(-1 + z^2)^2 + m (-1 + z^2) (40 - 17 Sqrt[1/z^2] z - 75 z^2 +
32 Sqrt[1/z^2] z^3) + m^3 z^2 (75 - 21 Sqrt[1/z^2] z - 135 z^2 +
40 Sqrt[1/z^2] z^3) + m^2 (33 - 10 Sqrt[1/z^2] z - 160 z^2 +
56 Sqrt[1/z^2] z^3 + 150 z^4 - 54 Sqrt[1/z^2] z^5))
JacobiSC[InverseJacobiND[z, m], m]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["m", ",", "3"]], "}"]]], RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", " ", RowBox[List[FractionBox["1", RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", SuperscriptBox["m", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "-", RowBox[List["23", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m"]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["11", " ", "m"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "15"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"], " ", RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["m", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List["45", "-", RowBox[List["11", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["7", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]], "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["40", "-", RowBox[List["17", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List["75", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["32", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "3"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["75", "-", RowBox[List["21", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List["135", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["40", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["33", "-", RowBox[List["10", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List["160", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["56", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["150", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["54", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "5"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <mrow> <msup> <mi> nd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 23 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> nd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> nd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> m </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 45 </mn> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> m </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 135 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 75 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 75 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 40 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 54 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 150 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 56 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 33 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> nd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> nd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> InverseJacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -23 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> </apply> <cn type='integer'> -8 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <ci> InverseJacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <ci> m </ci> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <ci> InverseJacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <cn type='integer'> 45 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 135 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 75 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -15 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 75 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 40 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -54 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 150 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 56 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 33 </cn> </apply> </apply> </apply> <apply> <ci> JacobiSC </ci> <apply> <ci> InverseJacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> InverseJacobiND </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["m_", ",", "3"]], "}"]]]]], RowBox[List["InverseJacobiND", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "-", RowBox[List["23", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m"]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["11", " ", "m"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "15"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"], " ", RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["m", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List["45", "-", RowBox[List["11", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["7", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]], "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["40", "-", RowBox[List["17", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List["75", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["32", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "3"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["75", "-", RowBox[List["21", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List["135", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["40", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "3"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List["33", "-", RowBox[List["10", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List["160", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["56", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["150", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["54", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SuperscriptBox["z", "5"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], RowBox[List["z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]], "2"]]]]]], RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], "3"], " ", SuperscriptBox["m", "3"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|