Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiDS






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiDS[z,m] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/09.30.20.0006.01









  


  










Input Form





D[JacobiDS[z, m], {z, \[Alpha]}] == FDPowerConstant[z, -1, \[Alpha]] z^(-\[Alpha] - 1) + 2 Sum[(((-1)^(k - 1) (2^(2 k - 1) - 1) BernoulliB[2 k])/ (Gamma[2 k - \[Alpha]] (2 k + 1))) (Pi/(2 EllipticK[m]))^(2 k) z^(2 k - \[Alpha] - 1), {k, 1, Infinity}] - ((2^(\[Alpha] - 1) Pi^(5/2) z^(1 - \[Alpha]))/EllipticK[m]^2) Sum[(((2 k + 1) EllipticNomeQ[m]^(2 k + 1))/(EllipticNomeQ[m]^(2 k + 1) + 1)) HypergeometricPFQRegularized[{1}, {1 - \[Alpha]/2, (3 - \[Alpha])/2}, -(((2 k + 1)^2 Pi^2 z^2)/(16 EllipticK[m]^2))], {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["JacobiDS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "k"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", "k"]], "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", RowBox[List["2", RowBox[List["EllipticK", "[", "m", "]"]]]]], ")"]], RowBox[List["2", "k"]]], SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "-", "\[Alpha]", "-", "1"]]]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], RowBox[List[SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", "k"]], "+", "1"]]], "+", "1"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"]]], "}"]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["16", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]]]]]], "]"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <mi> ds </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mtext> &#62371; </mtext> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mtext> </mtext> </mrow> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;1&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, FractionBox[&quot;\[Alpha]&quot;, &quot;2&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;3&quot;, &quot;-&quot;, &quot;\[Alpha]&quot;]], &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[SuperscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;\[Pi]&quot;, &quot;2&quot;], &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]], RowBox[List[&quot;16&quot;, &quot; &quot;, SuperscriptBox[RowBox[List[&quot;K&quot;, &quot;(&quot;, &quot;m&quot;, &quot;)&quot;]], &quot;2&quot;]]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> JacobiDS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#945; </ci> </apply> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["JacobiDS", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List["2", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["\[Pi]", RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], ")"]], RowBox[List["2", " ", "k"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]", "-", "1"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["\[Alpha]", "-", "1"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"]]], "}"]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["16", " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], "+", "1"]]]]]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29