|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/08.04.06.0067.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticE[z, m] == 4 Round[Re[z]/(2 Pi)] EllipticE[m] +
Tan[z/2] Sqrt[1 - m Sin[z]^2] + ((2 ArcSin[Sqrt[m] Sin[z]])/(Pi Sqrt[m]))
(m EllipticE[1/m] - (-1 + m) EllipticK[1/m]) -
((Sin[z] Sqrt[1 - m Sin[z]^2])/(8 m))
Sum[(Pochhammer[3/2, j]^2/(m^j ((j + 1)! (j + 2)!)))
HypergeometricPFQ[{1, 1, 3/2 + j, 3/2 + j}, {3/2, 2 + j, 3 + j},
Sin[z]^2], {j, 0, Infinity}] /; (Abs[m] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticE", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["4", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], RowBox[List["2", "\[Pi]"]]], "]"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "+", RowBox[List[RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]], SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List["2", RowBox[List["ArcSin", "[", RowBox[List[SqrtBox["m"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["m", " "]]]]]], RowBox[List["(", RowBox[List[RowBox[List["m", " ", RowBox[List["EllipticE", "[", FractionBox["1", "m"], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", "z", "]"]], SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], RowBox[List["8", "m"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["m", RowBox[List["-", "j"]]], SuperscriptBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "j"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["j", "+", "2"]], ")"]], "!"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List[FractionBox["3", "2"], "+", "j"]], ",", RowBox[List[FractionBox["3", "2"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["2", "+", "j"]], ",", RowBox[List["3", "+", "j"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]]]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mi> m </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <msup> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", "3"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List[SuperscriptBox["sin", "2"], "(", "z", ")"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> m </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> <mo> ⌉ </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mi> m </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mi> m </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <mtext> </mtext> <msup> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "4"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "+", "3"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List[SuperscriptBox["sin", "2"], "(", "z", ")"]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> m </mi> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> m </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticE", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["4", " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], "+", RowBox[List[RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["ArcSin", "[", RowBox[List[SqrtBox["m"], " ", RowBox[List["Sin", "[", "z", "]"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["m", " ", RowBox[List["EllipticE", "[", FractionBox["1", "m"], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]]]]]], ")"]]]], RowBox[List["\[Pi]", " ", SqrtBox["m"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["m", RowBox[List["-", "j"]]], " ", SuperscriptBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "j"]], "]"]], "2"]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", RowBox[List[FractionBox["3", "2"], "+", "j"]], ",", RowBox[List[FractionBox["3", "2"], "+", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["2", "+", "j"]], ",", RowBox[List["3", "+", "j"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "2"]], ")"]], "!"]]]]]]]]], RowBox[List["8", " ", "m"]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|