Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticE






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticE[z,m] > Series representations > Generalized power series > Expansions at m==infinity NEW E





http://functions.wolfram.com/08.04.06.0069.01









  


  










Input Form





EllipticE[z, m] \[Proportional] 4 (Sqrt[-m] + (1 + Log[-16 m])/(4 Sqrt[-m])) Round[Re[z]/(2 Pi)] + Sqrt[(-m) Sin[z]^2] Tan[z/2] + ((-(Csc[z]^2/(2 m)) + Log[-4 m Sin[z]^2]) Sin[z])/ (4 Sqrt[(-m) Sin[z]^2]) - ((Sin[z] Sqrt[(-m) Sin[z]^2])/(16 m)) HypergeometricPFQ[{1, 1, 3/2}, {2, 3}, Sin[z]^2] /; (Abs[m] -> Infinity) && Re[z] != Pi (2 k + 1) && Element[k, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticE", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", "m"]]], "+", FractionBox[RowBox[List["1", "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "16"]], "m"]], "]"]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["-", "m"]]]]]]]], ")"]], " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], " ", RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Csc", "[", "z", "]"]], "2"], RowBox[List["2", " ", "m"]]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["4", " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", "z", "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], RowBox[List["16", " ", "m"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "3"]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[NotEqual]", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 32 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mtext> </mtext> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8969; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 8 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 15 </mn> <mn> 64 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> E </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> &#10072; </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#8733; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#8970; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#960; </ms> </apply> <ms> &#8969; </ms> </list> </apply> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 32 </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> sec </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 6 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> tanh </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> cos </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 3 </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> sin </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 3 </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> + </ms> <ms> &#8230; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> &#8970; </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> <ms> &#960; </ms> </apply> <ms> &#8969; </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 3 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> 8 </ms> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 15 </ms> <ms> 64 </ms> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> + </ms> <ms> &#8230; </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> m </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 16 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 24 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <ms> 13 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 3 </ms> <ms> 16 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 5 </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <ms> 2 </ms> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <ms> 3 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> + </ms> <ms> &#8230; </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> m </ms> <ms> &#62754; </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticE", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", "m"]]], "+", FractionBox[RowBox[List["1", "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "16"]], " ", "m"]], "]"]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["-", "m"]]]]]]]], ")"]], " ", RowBox[List["Round", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]], " ", RowBox[List["Tan", "[", FractionBox["z", "2"], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Csc", "[", "z", "]"]], "2"], RowBox[List["2", " ", "m"]]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "4"]], " ", "m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["4", " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "m"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "1", ",", FractionBox["3", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "3"]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], RowBox[List["16", " ", "m"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "m", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[NotEqual]", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02